Problem Statement of Default Use Of RFC3484 Rules and Requirements for policy distribution #2

> draft-ietf-v6ops-addr-select-ps draft-ietf-v6ops-addr-select-req

> > (NTT PF Lab.) Arifumi Matsumoto Tomohiro Fujisaki (Intec NetCore, Inc.) Kenichi Kanayama Ruri Hiromi

updates from previous version

- for problem statement draft
 - no additional comments from WG
- for requirements draft
 - Targeted for wider scope than that of RFC 3484
 - Requirements for distributing RFC3484 address selection policy

- Requirements for <u>the address selection mechanisms</u>
- Added some requirements discussed at San Diego

Revised requirements

- 1. The mechanism can modify RFC 3484 default address selection behavior.
- 2. Timing: Nodes can get address selection information when it is necessary.
- 3. Address selection behavior at nodes can be dynamically updated.
- 4. The mechanism can support host-specific address selection.
- 5. Application specific policy is supported.
 - This can be achieved In a combination with APIs.
- 6. Multiple I/Fs cases should be considered.
- 7. Node's address selection behavior can be centrally controlled.

Next Step

- Any additional comments?
- Ready for WG last call ?

• Then, let's start to discuss about solutions.

Possible Approaches for Address Selection Problem

- Proactive Approach
 - Deliver Everything Needed At Once Approach
 - E.g. A host acquires RFC 3484 Policy Table
 - A Question and An Answer Approach
 - A host asks an Agent Server(e.g. a router) "which of my addresses is the best for a destination ?"
- Reactive Approach
 - Try-and-Error Approach
 - An ICMP Error notifies the host of address mal-selection and the host stores cache in case for the next try.
 - All by Oneself Approach
 - Shim6: A host performs failure detection and address cycling

static

Proactive Approach 1/2

"Deliver Everything Needed At Once Approach"

- Advantages and Disadvantages
 - Per-connection overhead time can be minimized.
 - Traffic volume = #of policies * # of hosts in the network.
 - Hosts and Servers need to have this function support.
 - In a dynamically changing network traffic increases.
- E.g. "RFC 3484 Policy Table Delivery by DHCPv6"
 - draft-fujisaki-dhc-addr-select-opt-03.txt
 - OS needs no change if it has RFC 3484 Policy Table.
 - Both Dst. and src. address selections are supported.
 - Policies beyond Policy Table capability are not supported.
 - DHCPv6 isn't suitable for frequent information update.

Proactive Approach 2/2 "A Question and An Answer Approach"

- Advantages and Disadvantages
 - Dynamically changing network status is easily reflected.
 - Both Dst. and src. address selections are supported.
 - Per-connection overhead process and time.
 - Host implementation needs a big change.
 - Every application also has to be modified.
 - Today, dst address selection at App, src at kernel.
- E.g. "Address Selection Agent Server"
 - No concrete specification yet.

Reactive Approach 1/2 "Try-and-Error Approach"

- An ICMP Error notifies the host of address malselection.
- The host stores cache in case for the next try.
- Advantages and Disadvantages
 - Can reflect dynamically changing routing status if cache lifetime works nicely.
 - Per destination host cache can be so big.
 - Host and Router needs to be changed.
 - There is not enough experience about this cache mechanism.
 - The user has to wait before finding working address pair.
- E.g. RFC3484-update by M. Bagnulo

Reactive Approach 2/2 "All by Oneself Approach"

- A host performs failure detection and address cycling
- E.g. Shim6
- Advantages and Disadvantages
 - Dynamic network failures between E2E can be reflected to address selection.
 - A session survivability supported.
 - No router modification needed.
 - The host implementation has to be changed significantly.
 - A User has to wait before finding working address pair.
 (?)
 - A host stores address selection cache per host.
 - Site address selection policy(TE) cannot be reflected. (?)

Next next step

- Any other solution ?
- We will write a new draft for solution comparison.

• Thank you.