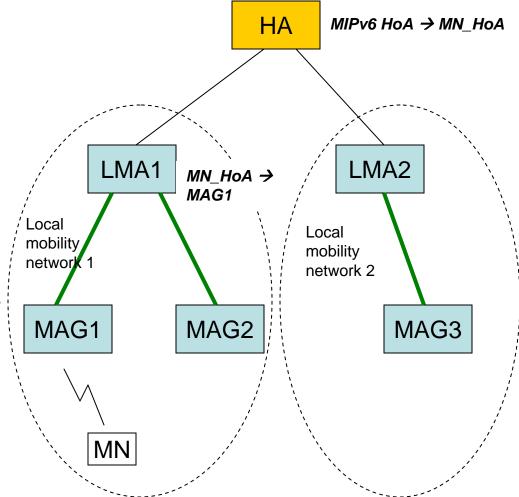
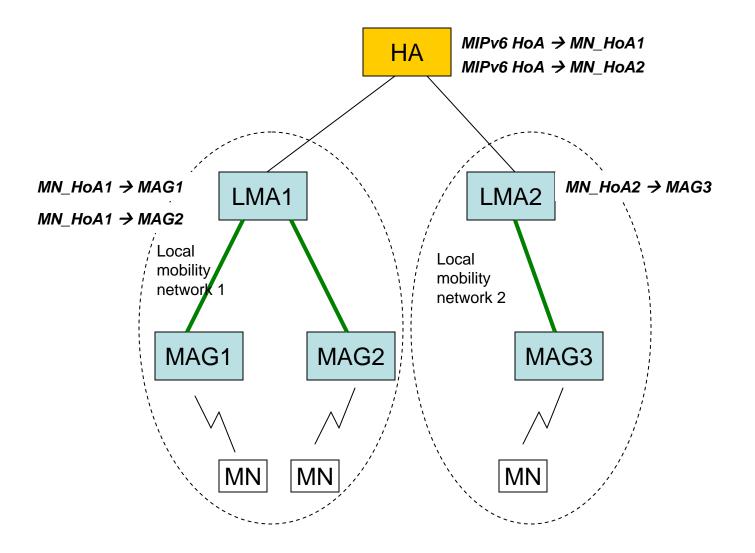
PMIPv6 – MIPv6 Interactions


NETLMM WG, IETF 69

Status

- draft-giaretta-netImm-mip-interactions-01 submitted recently
- A Merge of three drafts
 - draft-giaretta-netlmm-mip-interactions-00
 - draft-devarapalli-netlmm-pmipv6-mipv6-01
 - draft-weniger-netlmm-pmipv6-mipv6-issues-00
- Describes three interworking scenarios between MIPv6 and PMIPv6
 - Captures issues
 - Describes possible solutions to address the issues

Scenario A


- PMIPv6 and MIPv6 used in an hierarchical manner
 - PMIPv6 used for local mobility management
 - MIPv6 used for global mobility management
 - Mobility between LMAs results in an update of MIPv6 binding
- PMIPv6 assigned address (MN_HoA) is used as the CoA for MIPv6 binding
- The result is a Mobile IP tunnel over the PMIPv6 tunnel

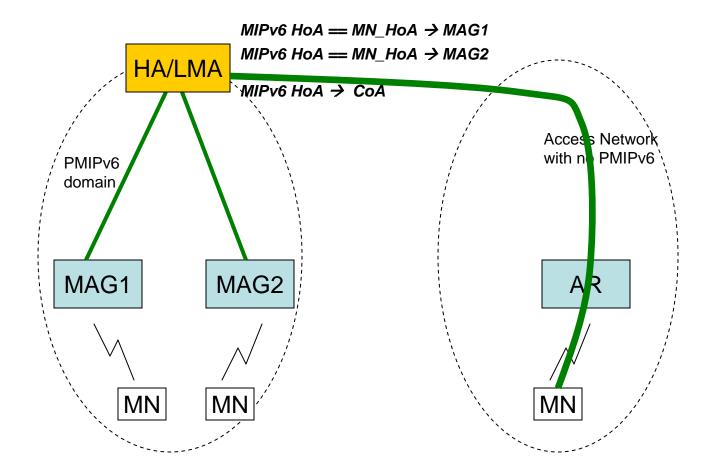
Scenario A (contd.)

- No issues have been identified for this scenario
- The draft describes message flows for handovers

Scenario A – Handover flow

Scenario B

- A Mix of mobile nodes that use MIPv6 and those that depend on PMIPv6 on mobility management in a particular access network
- A common mobility anchor
 - Acts a MIPv6 HA for those MNs that use MIPv6
 - Acts a PMIPv6 LMA for those MNs that depend on PMIPv6 for mobility management
- Access router performs a dual role
 - IPv6 access router for those MNs that use MIPv6
 - CoA configured from prefixes advertised by the access router
 - MAG for those MNs that use PMIPv6


Scenario B (contd.)

- The access router needs to know if the mobile node wants to use MIPv6 or rely on PMIPv6
 - Advertise a local prefix for CoA configuration for MIPv6 MNs
 - Advertise home network prefix from the LMA for MNs that rely on PMIPv6
- Not addressed in the draft currently
 - This is a system deployment issue
 - Not a protocol issue

Scenario C

- MN transitions between using MIPv6 and PMIPv6
- MIPv6 HA and PMIPv6 LMA functionalities colocated on the same node
- Some access networks support PMIPv6 and some don't
 - Some of those access networks that support PMIPv6 appear as home link with respect to MIPv6
 - MN does not send a MIPv6 binding update since it is at home
 - No tunneling overhead when MN attached to home link
- Mobile IPv6 stack on the mobile node always active

Scenario C – Handover flow

Scenario C – Binding Cache Lookup

- Binding cache lookup is different for MIPv6 and PMIPv6
 - MIPv6 HA uses home address
 - PMIPv6 LMA uses MN identity
- The HA/LMA entity needs to use both the MN identity and the home address for lookup
 - If IKEv2/IPsec is used, the MN identity is obtained from the IDi payload during the IKEv2 exchange
 - If RFC 4283 is used (along with RFC 4285), the identity is carried along with the binding update
 - For PMIPv6, MN identity is carried along with the proxy binding update
- At any time, there is only one binding cache entry per mobile node

Scenario C – Binding Cache Update

- The binding cache entry for the MN is modified both by the MAG and the MN
- HA/LMA must allow both authorized MAGs and the MN to modify the binding cache entry for the MN
 - The PMIPv6 base specification already requires the LMA to verify if the MAG is authorized to send a proxy BU on behalf of the MN

Scenario C – Processing a MIPv6 de-registration BU

- When the MN transitions from MIPv6 to PMIPv6, the de-registration BU from the MN is received after the proxy BU from the MAG
 - This could delete the binding cache entry created/updated by the MAG
- The draft recommends ignoring the deregistration BU from the MN
 - If the proxy flag is set in the binding cache entry
 - Send a binding ack with status 0 (success)

Scenario C – Out of order BUs and Proxy BUs

- MN transitions from PMIPv6 to MIPv6
 - MAG sends a Proxy BU to create/update the binding cache entry when the MN is attached to the PMIPv6 domain
 - Proxy BU is delayed
 - MN sends a BU from a non-PMIPv6 domain and creates a binding cache entry at the HA
 - The delayed Proxy BU when received by the LMA overrides the binding cache entry for the MN
 - MN cannot send/receive packets until it sends a BU again
- MN transitions from MIPv6 to PMIPv6
 - MN sends a BU from a non-PMIPv6 domain
 - The BU is delayed
 - MN moves to a PMIPv6 domain and the MAG sends a proxy BU
 - The delayed BU from the MN is received after the Proxy BU from the MAG this overrides the binding cache entry created by the MAG
 - No packets can be sent/received until the MAG sends a proxy BU again
- There are some proposals, but no solution in the draft yet
 - Tentative BCE with a hystersis timer

Scenario C – LMA/HA bootstrapping

- Bootstrapping should ensure that the same HA and LMA is used
 - LMA assigned for the MN should be usable as a MIPv6 HA
 - Same home address assigned using PMIPv6 and MIPv6
- In case Home Agent is assigned through the bootstrapping procedure, then this can be addressed easily
 - The assigned home agent can ensure the same home address is given to the MN again
- In case Home Agent is discovered, for example using DNS, it is an issue
 - No solution yet

Scenario C – Threat of Compromised MAG

- A compromised MAG can create havoc with binding cache entries for the mobile nodes
- Threat exists even with base PMIPv6
- But the threat here is worse since it affects also MNs that use MIPv6-only and not just those MNs that transition between using MIPv6 and PMIPv6
- Documented in the security considerations section