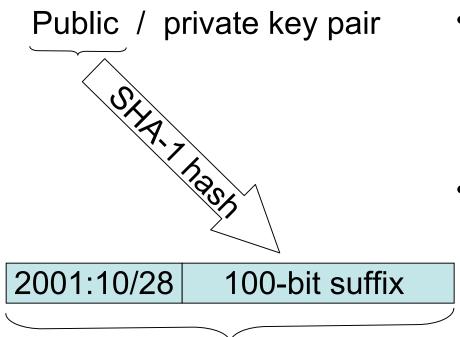

The HIP-HOP proposal draft-matthews-p2psip-hip-hop-00

Philip Matthews philip_matthews@magma.ca


HIP-HOP vs. the others

- Uses HIP (Host Identity Protocol) and leverages work of HIP WG.
- Three key differences:
 - 1) Architecture of P2P layer
 - 2) Definition of Peer ID
 - 3) How forwarding at peers is done

- Other proposals: monolithic P2P layer. HIP-HOP: Three separate protocols.
- Distributed Transport: deliver msg to arbitrary peer (even if behind NAT).
 - Focus of HIP-HOP proposal. Can adapt other proposals to provide Distributed DB and Overlay Maint protocols.
 - Distributed DB, Overlay Maint, SIP, and other apps use this layer for sending/receiving.
 - Supports apps other than SIP.

Diff #2: Peer IDs in HIP-HOP

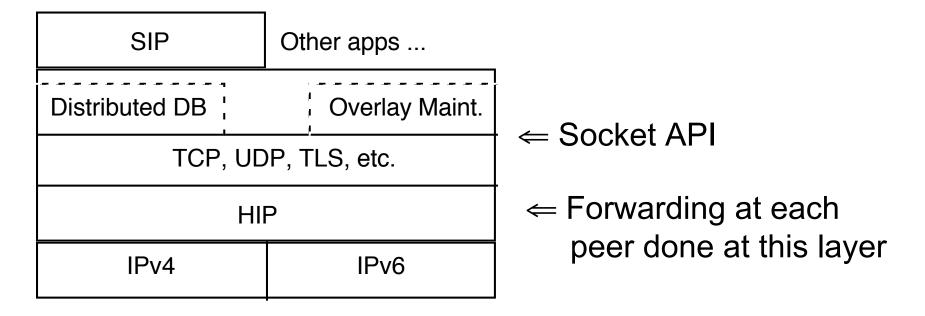
- Public key is ultimate identifier of a peer.
 - Peer can prove ownership because it alone knowns private key.
- Peer ID looks like IPv6 addr, but is distinguishable due to prefix.

Peer ID looks like IPv6 address

Process defined in RFC 4843 and draft-ietf-hip-base.

Diff #2: Peer IDs

HIP-HOP


- Peer ID is special IPv6 address with crypto:
- Prevents identity theft;
- Re-uses existing APIs and IPv6 protocol work;

Other Proposals

Peer ID is 160 bits (ASP is 128), no crypto:

- Can hijack a Peer ID;
- Need new APIs and protocol extensions;

Diff #3: Forwarding

- A UDP encapsulation layer is used when necessary to transport HIP through NATs.
- HIP layer also replaced/removed in certain cases.

Diff #3: Forwarding at Peers

HIP-HOP

Forwarding done **below** transport layer:

- Use Socket API and all existing transport protocols
 - Many apps = no change
 - Transport protos work with Peer IDs, not IP addresses
- Transport conn = end-toend;
 - TLS security / reliability / congest cntl is end-to-end
- NAT traversal and mobility handled at HIP layer.

Other Proposals

Forwarding done **above** transport layer:

- Need new APIs
 All apps must change
- Transport conn = hop-byhop
 - TLS security / reliability / congest cntl is hop-by-hop
 = "link layers"
 - Some proposals try to patch some of these problems
- NAT traversal and mobility handled by each app separately.

Other Details in Brief

- Inherits well-though-out security properties of HIP.
- Inherits HIP mobility support.
- High-level NAT Traversal strategy as in draftmatthews-p2psip-nats-and-overlays
 - (Same as dSIP, RELOAD, ASP)
 - Detailed NAT traversal procedures use HIP procedures (ICE)
- Bootstrap procedures as in draft-matthews-p2psipbootstrap (adapted for HIP)
- HIP used for signaling overlay connections, and encapsulating application data

- HIP header carries src and dst peer ID, etc.

 Interoperable open-source implementations of HIP for Windows, MacOS, Linux, and FreeBSD.

– Working on HIP-HOP extensions.