Network Working Group J. Laganier Internet-Draft DoCoMo Euro-Labs Intended status: Informational S. Narayanan Expires: November 23, 2007 Panasonic May 22, 2007 Network-based Localized Mobility Management Interface between Mobile Node and Mobility Access Gateway draft-ietf-netlmm-mn-ar-if-02 Status of this Memo By submitting this Internet-Draft, each author represents that any applicable patent or other IPR claims of which he or she is aware have been or will be disclosed, and any of which he or she becomes aware will be disclosed, in accordance with Section 6 of BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet- Drafts. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt. The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html. This Internet-Draft will expire on November 23, 2007. Copyright Notice Copyright (C) The IETF Trust (2007). Laganier & Narayanan Expires November 23, 2007 [Page 1] Internet-Draft NETLMM MN-MAG Interface May 2007 Abstract This document describes an interface between mobile nodes (MN) and mobility access gateway (MAG) of a network-based localized mobility management (NETLMM) domain. The interface has two functions which are invocated when a MN attaches and detaches from a MAG. The attachment function let the MAG authenticate the MN identifier, does address(es) and default router configuration for the MN, and inform the MAG about the multicast listener state of the MN. During a successful execution of the detachment function, the NETLMM protocol is triggered between the MAG and the localized mobility anchor (LMA). The detachment function let the MAG detect that the MN has left so that it can deregister the MN at the LMA using the NETLMM protocol. Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3 2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 5 3. Operating Environment . . . . . . . . . . . . . . . . . . . . 7 4. Interactions of NETLMM Architecture with Subnet and Link Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4.1. NETLMM Subnet Model . . . . . . . . . . . . . . . . . . . 10 4.2. NETLMM Link Model . . . . . . . . . . . . . . . . . . . . 11 5. Address Collision Considerations . . . . . . . . . . . . . . . 12 6. MN_ATTACH Function . . . . . . . . . . . . . . . . . . . . . . 13 6.1. MAG_GET_MN_ID Sub-function . . . . . . . . . . . . . . . . 13 6.2. MN_GET_ADDR_PARMS Sub-function . . . . . . . . . . . . . . 15 6.3. MN_GET_DEFAULT_ROUTER Sub-function . . . . . . . . . . . . 15 6.4. MAG_GET_MN_MCAST_GROUPS Sub-function . . . . . . . . . . . 15 7. MN_DETACH Function . . . . . . . . . . . . . . . . . . . . . . 17 8. Security Considerations . . . . . . . . . . . . . . . . . . . 18 9. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 19 10. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 20 11. References . . . . . . . . . . . . . . . . . . . . . . . . . . 21 11.1. Normative references . . . . . . . . . . . . . . . . . . . 21 11.2. Informative references . . . . . . . . . . . . . . . . . . 22 Appendix A. Version history . . . . . . . . . . . . . . . . . . . 23 A.1. -01 to -02 . . . . . . . . . . . . . . . . . . . . . . . . 23 A.2. -00 to -01 . . . . . . . . . . . . . . . . . . . . . . . . 23 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 24 Intellectual Property and Copyright Statements . . . . . . . . . . 25 Laganier & Narayanan Expires November 23, 2007 [Page 2] Internet-Draft NETLMM MN-MAG Interface May 2007 1. Introduction It is suggested in [RFC4830] that it would be desirable to have a localized mobility management protocol in which the host is not involved. The requirements for such a protocol have been analyzed in [RFC4831]. Accordingly, a protocol for network-based localized mobility management (NETLMM) of IPv6 nodes is specified by the NETLMM working group [I-D.ietf-netlmm-proxymip6]. Because the NETLMM protocol is network based, the mobile node (MN) is not required to implement new mechanism in its IP stack, nor to change its IP address when it attaches to a new mobility access gateway (MAG). Because the IPv6 MN will use a vanilla IPv6 stack, the interface between a MN and its MAG has to be preserved. This means that standard IPv6 should work seamlessly with the network-based localized mobility support. More specifically, we require the proposed solution to be compatible with the mechanisms specified in: o Neighbor Discovery for IP version 6 [RFC2461] o IPv6 Stateless Address Autoconfiguration [RFC2462] o Dynamic Host Configuration Protocol for IPv6 (DHCPv6) [RFC3315] o Privacy Extensions for Stateless Address Autoconfiguration in IPv6 [RFC3041] o Detecting Network Attachment in IPv6 Networks (DNAv6) [I-D.ietf-dna-protocol] o SEcure Neighbor Discovery [RFC3971] o Cryptographically Generated Addresses [RFC3972] This document describes an interface between mobile nodes (MN) and mobility access gateway (MAG) of a network-based localized mobility management (NETLMM) domain. The interface has two functions which are invocated when a MN attaches and detaches from a MAG. The attachment function let the MAG authenticate the MN identifier, does address(es) and default router configuration for the MN, and inform the MAG about the multicast listener state of the MN. During a successful execution of the detachment function, the NETLMM protocol is triggered between the MAG and the localized mobility anchor (LMA). The detachment function let the MAG detect that the MN has left so that it can deregister the MN at the LMA using the NETLMM protocol. In the absence of link-layer specific mechanisms implementing these functions, this document describe which IP protocols should be used Laganier & Narayanan Expires November 23, 2007 [Page 3] Internet-Draft NETLMM MN-MAG Interface May 2007 to provide the necessary interface between the MN and the MAG. Laganier & Narayanan Expires November 23, 2007 [Page 4] Internet-Draft NETLMM MN-MAG Interface May 2007 2. Terminology The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119]. The following terms are defined within the scope of this document: Mobile Node (MN) an IPv6 node moving in the NETLMM domain. Mobility Access Gateway (MAG) a default router that connects the MN to the NETLMM domain. Localized Mobility Anchor (LMA) a router located in the NETLMM domain that handles packet exchanges with nodes in the domain. Network-based Localized Mobility Management Domain (NETLMM domain) an administrative domain spanning links served by a set of LMAs (and their associated MAGs and MNs) that provision addresses from the same IP subnet prefix(es). Network-based Localized Mobility Management Protocol (NLMP) The NETLMM Protocol used in the backhaul of the NETLMM domain between MAGs and LMA. The following abbreviations are used throughout this document: NETLMM: Network-based Localized Mobility Management ND: Neighbor Discovery. NS: Neighbor Solicitation. NA: Neighbor Advertizement. RS: Router Solicitation. RA: Router Advertisement. NDP: Neighbor Discovery Protocol. SLAAC: StateLess Address AutoConfiguration DHCP: Dynamic Host Configuration Protocol SEND: SEcure Neighbor Discovery. Laganier & Narayanan Expires November 23, 2007 [Page 5] Internet-Draft NETLMM MN-MAG Interface May 2007 DNA: Detecting Network Attachment. CGA: Cryptographically Generated Address. MNID: An authenticated MN identifier (e.g. NAI, a SEND public key used by the MN for generating its CGAs,an IMSI or TMSI, etc.). Laganier & Narayanan Expires November 23, 2007 [Page 6] Internet-Draft NETLMM MN-MAG Interface May 2007 3. Operating Environment The MN-MAG NETLMM interface is used between a MN and an MAG of a NETLMM domain. It allows the MAG and/or MN to detect network attachment and detachment, causing the MAG to use the NETLMM protocol to update routing at the LMA so that the MN stays reachable when it roams across the NETLMM domain. /---------------------------\ / Internet \ \ / \-------+---------+---------/ | | /--------+---------+--------\ ---- / \ ^ / +-----+ \ | | | LMA |-+ | N | +-----+ |-+ | E | +-----+ | | T | +-----+ | L | Backhaul Network | M | +------+ +------+ | M |- - | MAG1 | ..... | MAG2 | - -| | +------+ +------+ | d | / \ Access / \ | o | / \ Network / \ | m | / \ / \ | a | +----+ | i | | MN | -------> | n \ +----+ MAG change / | \ / v \---------------------------/ ---- Figure 1: Reference Network Diagram The deployment scenario is shown in Figure 1 above: Several MAGs are attached to an IP routing domain connected to the outside Internet via a LMA. The MNs, MAGs, LMAs, and in-between routing fabric constitute the NETLMM domain. Packets arriving at the LMA and destined to a MN are tunneled to the appropriate MAG. In the absence of a link-layer specific mechanisms to implement the MN-MAG interface, it is required to have a common interface defined at the IP layer. Because no NETLMM specific software support is assumed to be present on MNs, this interface has to rely only on standard tracks IPv6 protocols such as ND, DHCP, SEND, and DNA. Interactions of these components with NETLMM are represented in Figure 2 below (note that hints received by DNA from other layers are Laganier & Narayanan Expires November 23, 2007 [Page 7] Internet-Draft NETLMM MN-MAG Interface May 2007 omitted for clarity): MN|MAG Interface | | +------------+ +----------+ | | | | | | +--------+ | NLMP | +------+ | | | NETLMM |<-------->|NETLMM| | | | +--------+ | | +------+ | | ^ ^ | | ^ | +----------+ | | | | | | | | | | | v | | | | | | +------+ | | | +-----+ | | | | | | | DNA | | NDP/DHCP | | DNA | | | | | | | | SEND |<------|------>|SEND | | | | | | | | ND | | | | ND | | | | | | | | DHCP | | | | |DHCP | | | | | | | +------+ | | +-----+ | | | | | | ^ | | | ^ | | | | | | | | | | | | | | | | v | | | v | | | v | | +------+ | | +----+ | | | +------+ | | | | | | | | |<-+ | | | | | | | | | IPv6 | | | | IPv6 | | | | | | IPv6 |<------|------>|IPv6|<------------>| IPv6 | | | +------+ | | +----+ | | +------+ | | | | | | | | | MN | | MAG | | LMA | +----------+ | +------------+ +----------+ | Figure 2: NETLMM Component Interactions Laganier & Narayanan Expires November 23, 2007 [Page 8] Internet-Draft NETLMM MN-MAG Interface May 2007 MN|MAG Interface MN | MAG LMA | | | | | / | \ | / \ | | /| | |\ | /| |\ | | / +---------------------+ \ | / +----------+ \ | |/ MN_ATTACH \|/ NETLMM \| |\ function /|\ protocol /| | \ +---------------------+ / | \ +----------+ / | | \| | |/ | \| |/ | | \ | / | \ / | | | | | | / | \ | / \ | | /| | |\ | /| |\ | | / +---------------------+ \ | / +----------+ \ | |/ data packet \|/ data packet \| |\ traffic /|\ traffic /| | \ +---------------------+ / | \ +----------+ / | | \| | |/ | \| |/ | | \ | / | \ / | | | | | | / | \ | / \ | | /| | |\ | /| |\ | | / +---------------------+ \ | / +----------+ \ | |/ MN_DETACH \|/ NETLMM \| |\ function /|\ protocol /| | \ +---------------------+ / | \ +----------+ / | | \| | |/ | \| |/ | | \ | / | \ / | | | | | Figure 3: NETLMM MN-MAG Interface Usage Overview Laganier & Narayanan Expires November 23, 2007 [Page 9] Internet-Draft NETLMM MN-MAG Interface May 2007 4. Interactions of NETLMM Architecture with Subnet and Link Models Within the Internet addressing model, the link and subnet terms, have a tight relationship. Their generally admitted definitions are [I-D.thaler-intarea-multilink-subnet-issues]: Link: a topological area of an IP network delimited by routers. Subnet: a topological area of an IP network that uses the same unsubdivided address prefix. There has recently been protocol proposals achieving multi-link subnets, i.e. the ability for a subnet to span multiple links. However, the consensus in the IETF has been, and remains, that one subnet spans only one link [I-D.thaler-intarea-multilink-subnet-issues]. A straightforward approach to the design of NETLMM would have been to lay a single subnet on the entire NETLMM domain. That would ensure that the MN does not see layer 3 movements since the subnet would never change. However, such an approach would constitute a multi- link subnet, and is thus not deemed acceptable. The following subsection will discuss what kind of subnet and link models have been chosen for the NETLMM architecture. 4.1. NETLMM Subnet Model Thus, the NETLMM addressing model is subject to the following two constraints: o The subnet of a MN does not change when the MN changes its attachment point in the domain. o The subnet of a MN does not span more than one link. Because of the first constraint, the subnet of a MN must be valid wherever in the domain the MN attaches to. However, because of the second constraint, the subnet cannot be valid at more than one such attachment points. Thus, the subnet of the MN has to follow the movements of the MN. This addressing model is denoted "per-MN subnet model", and satisfies constraints of both the Internet and NETLMM architectures: A unique prefix MUST be assigned by the NETLMM fabric to each of the MN in the domain. The MAG MUST NOT configure a global unicast address based on this prefix. Laganier & Narayanan Expires November 23, 2007 [Page 10] Internet-Draft NETLMM MN-MAG Interface May 2007 4.2. NETLMM Link Model The choice of the per-MN addressing model is however conflicting with the use of a shared link layer (e.g. Ethernet, 802.11) as a last hop of the NETLMM domain. In the per-MN subnet model, two MNs always have different subnets. Hence, even though they might be attached to the same shared link layer, they will never communicate directly with global addresses. That happens since on-link determination will always conclude that they are attached to different link because it is based on subnet comparisons. They will however be able to communicate directly with link-local addresses. This is not problematic since link-local addresses are confined to one link and therefore it does not introduce multi-link subnet issues. There is however one problem that arises due to the use of Solicited- Node and All-Nodes multicast IPv6 addresses [RFC4291] as a destination address for sending unsolicited Neighbor Advertisement (NA) messages [RFC2461]. When one MN sends such message, it can be received by other MNs on the same link which will, as a result, create a neighbor cache entry for the sender of the NA. If the NA contained as a target address one of the MN's global unicast address, the receiver is then in a position to communicate directly with this global unicast address, even though it does not share a common subnet prefix (they are per-MN subnet prefixes). This is not a problem as long as these two MNs remain attached on the same link. But if later on one of the MN moves onto a different link, they will no longer be able to communicate directly and this will result in a communication failure, although they were using global addresses whose reachability should be maintained. This is not acceptable. Thus, the interface described in this document MUST only be used in deployments where the link between the MN and the MAG is point- to-point. The interface MUST NOT be used in deployments where the link between the MN and the MAG is shared and/or multi-access. Future specifications MAY define interfaces for use with shared and/or multi-access links. Laganier & Narayanan Expires November 23, 2007 [Page 11] Internet-Draft NETLMM MN-MAG Interface May 2007 5. Address Collision Considerations As per the DNAv6 protocol [I-D.ietf-dna-protocol], the MN will not execute again Duplicate Address Detection (DAD)[RFC2462] after a handoff in the domain. This is because the MN will always receive the same subnet prefix in the RA and conclude that it did not changed link. Hence there seems to be no need for executing DAD again. However, in NETLMM the link did changed. Because the link is point- to-point the only new entity on the link is the MAG, and it is possible that a collision occurs between link local addresses of the MN and the MAG (Note that no collision are possible with global unicast address(es) since the subnet prefix has been uniquely assigned to the MN). One solution to this issue would be that in a given domain, each MAG also defends link-local addresses of other MAGs in the domain. This would ensure that when the MN first attaches to the NETLMM domain and execute DAD it is able to pro-actively detect collision that may happen with any MAG of the domain. Such a solution has however two drawbacks: o Each MAG needs to know link-local addresses of all other MAGs in the domain. o If SEND is used, each MAG also need to know private keys of all other MAGs since SEND requires a Neighbor Advertisement (NA) message defending an address to be signed with the SEND public key generating the CGA link-local address. A much simpler solution is: All MAGs in a NETLMM domain MUST configure the same link-local address. When SEND is used, that means that all MAGs share a single SEND public-private key pair, and hence a single link-local CGA. Since all MAGs in a domain have the same link local address, if the MN executes DAD at his first attachment and concludes that there is no collision with the link-local address of the first MAG, a collision with any other MAG in the domain is impossible. Laganier & Narayanan Expires November 23, 2007 [Page 12] Internet-Draft NETLMM MN-MAG Interface May 2007 6. MN_ATTACH Function The MN_ATTACH function is invocated by the MN whenever it attaches to a new MAG, and is constituted by the following sub-functions: o MAG_GET_MN_ID: It provides the MAG with the identifier of the MN (MNID). This identifier MUST be securely bound to the MN, and the corresponding binding MUST be verifiable by the MAG. This triggers the MAG to authenticate the MN as the owner of this MNID. If authentication fails the MN_ATTACH function terminates with failure status, otherwise it continues. o MN_GET_ADDR_PARMS: It provides the MN with IPv6 addressing configuration parameters, i.e. IPv6 subnet prefix(es) or global address(es). The MAG will then register the MN IPv6 subnet prefix(es) or address(es) with the LMA using the NETLMM protocol. o MN_GET_DEFAULT_ROUTER: It provides the MN with the link local IPv6 address of its default router (e.g. the MAG). o MAG_GET_MN_MCAST_GROUPS: It provides the MAG with the multicast group(s) that the MN previously joined (while attached to a previous MAG). This triggers the MAG to subscribe to the multicast tree(s) corresponding to the group(s) joined by the MN. The MN_ATTACH function will typically be implemented by multiple protocols, some of them possibly non-IP protocols. The following subsections will describe in more details the MAG_GET_MN_ID, MN_GET_ADDR_PARMS, MN_GET_DEFAULT_ROUTER, and MAG_GET_MN_MCAST_GROUPS subfunctions, in particular what they achieve, and how. 6.1. MAG_GET_MN_ID Sub-function The MAG_GET_MN_ID function provides the MAG with the identifier of the MN (MNID). This identifier MUST be securely bound to the MN, and the corresponding binding MUST be verifiable by the MAG [RFC4832]. This triggers the MAG to authenticate the MN as the owner of this MNID. If authentication fails the MN_ATTACH function terminates with failure status, otherwise it continues. When the MN_ATTACH functions includes a network access authentication protocol, such as EAP [RFC3748], the MN identifier authenticated by the network access authentication protocol is a valid MN ID it satisfies above constraints (freshness of authentication, verifiable by the MAG). When the mix of protocols implementing the MN_ATTACH does not include a network access authentication protocol, or the network access Laganier & Narayanan Expires November 23, 2007 [Page 13] Internet-Draft NETLMM MN-MAG Interface May 2007 authentication protocol does not provide a suitable MN identifier, or does not guarantee fresh authentication of the MN, an alternative authentication method based on the DNAv6 protocol [I-D.ietf-dna-protocol] and the SEND protocol [RFC3971] MUST be used to authenticate the MN, as described below: MN MAG LMA |------>| | REQ1. RS(Nonce_MN,PK_MN,Signature_MN) |<------| | REQ2. NS(Nonce_MAG,PK_MAG,Signature_MAG) |------>| | REP2. NA(Nonce_MAG,PK_MN,Signature_MN) |<------| | REP1. RA(Nonce_MN,PK_MAG,Signature_MAG) Figure 4: DNAv6/SEND based MNID authentication o In step REQ1, after attachment occurs, and upon the occurrence of a Layer 2 link-up event notification, the MN initiate self- authentication to the MAG by sending a RS from its link local address to the link-scope all-routers multicast address, as per Section 5.2.5 of the DNAv6 protocol [I-D.ietf-dna-protocol]. Since this RS is not sent from the unspecified address, it contains the MN SEND public key (PK_MN) in a CGA option, as per Section 5.1.1 of the SEND protocol [RFC3971]. This public key is used as a MN ID by the MAG. o In step REQ2, after the MAG received from the MN a RS containing the MN ID (PK_MN) and the MN link local address, the MAG MUST sollicit the link-local address of the MN by sending a NS to the link-local address of the MN. This NS contains a fresh nonce (Nonce_MN) as per Section 5.3.3. of the SEND protocol [RFC3971]. o In step REP2, after the MN received from the MAG a NS containing a fresh nonce, it replies to the MAG with a NA containing the same fresh nonce as per Section 5.3.3 of the SEND protocol [RFC3971]. This NA is signed with the MN public key (i.e. the MN ID) as per Section 5.2.1 of the SEND protocol [RFC3971]. The MAG will verify 1) that the Nonce is fresh as per Section 5.3.4.1 of the SEND protocol [RFC3971], and 2) that the signature is valid for this public key as per Section 5.2.2 of the SEND protocol [RFC3971]. If these verifications succeeds, the MAG has successfully authenticated the MN as the owner of the MN ID. o In step REP1, the MAG concludes the DNAv6 protocol [I-D.ietf-dna-protocol] by sending to the MN a RA. This step is not part of the authentication of the MN and is shown here for completeness only. Note that step REP1 can happen before steps REQ2 or REP2. Laganier & Narayanan Expires November 23, 2007 [Page 14] Internet-Draft NETLMM MN-MAG Interface May 2007 6.2. MN_GET_ADDR_PARMS Sub-function The MN_GET_ADDR_PARMS function allows the MN to configure IP addresses. This can be achieved via different means, including: o Stateless Address Autoconfiguration (SLAAC) [RFC2462]: Allows the MN to configure both link local and global unicast address(es). o Dynamic Host Configuration Protocol for IPv6 (DHCPv6) [RFC3315]: Allows the MN to configure global unicast address(es). Typically not used to configure link local unicast address(es). o IP Version 6 over PPP [I-D.ietf-ipv6-over-ppp-v2]: Allows the MN to configure link local unicast address(es). Whenever the MN attaches to a new MAG which is the same domain as its old MAG, the MN_GET_ADDR_PARMS at the new MAG MUST must not change the address(es) that were configured by the MN at the old MAG. 6.3. MN_GET_DEFAULT_ROUTER Sub-function The MN_GET_DEFAULT_ROUTER function provides the MN with its default router. This can be achieved via different means, including: o Router Discovery as specified by the Neighbor Discovery Protocol [RFC2461]. o IP Version 6 over PPP (PPPv6) [I-D.ietf-ipv6-over-ppp-v2]. Note that Dynamic Host Configuration Protocol for IPv6 (DHCPv6) [RFC3315] does not provide a default router. Instead, Router Discovery has to be used. 6.4. MAG_GET_MN_MCAST_GROUPS Sub-function The MAG acts as a multicast router for the MN. The MAG_GET_MN_MCAST_GROUPS provides the MAG with the Multicast Address Listening state of the newly attached MN (this state might have been established while attached to a previous MAG). This triggers the MAG to subscribe to the multicast tree(s) corresponding to the source(s) the MN is listening to. In many system architectures, this can be achieved by having, upon movement of the MN, the old MAG doing context transfer to the new MAG of the Multicast Address Listening state learned via MLDv2 [RFC3810] messages. When the deployment does not offer such context transfer, upon each Laganier & Narayanan Expires November 23, 2007 [Page 15] Internet-Draft NETLMM MN-MAG Interface May 2007 new MN attachment the MAG MUST send a MLDv2 [RFC3810] General Query to the link-scope all-nodes multicast address as per Section 5.1.15 and 7.1 of the MLDv2 protocol [RFC3810]. A newly attached MN will then reports its Multicast Address Listening state as per Section 6.2 of the MLDv2 protocol [RFC3810], thus allowing the MAG to register to the appropriate multicast tree(s). Laganier & Narayanan Expires November 23, 2007 [Page 16] Internet-Draft NETLMM MN-MAG Interface May 2007 7. MN_DETACH Function When a MN detaches from a MAG, the MAG has to deregister this MN with the LMA. When the underlying link layer provides a reliable indication of a MN having detached from the MAG, the MAG MUST deregister the MN with the LMA upon reception of such indication. When the underlying link layer provides no reliable indication of a MN having detached from the MAG, it is necessary to allow the MAG to detect a MN which silently detaches, or crashes, so that it can deregister the MN as a consequence. When such link layer are used, the MAG MUST periodically execute Neighbor Unreachability Detection as per Section 7.3 of the Neighbor Discovery Protocol [RFC2461] with each of the attached MN, even though it has no traffic to deliver to the MN. When a MN detaches from a MAG, the MAG MUST conclude that multicast address listening for the MN terminates for all the sources it was listening to. Laganier & Narayanan Expires November 23, 2007 [Page 17] Internet-Draft NETLMM MN-MAG Interface May 2007 8. Security Considerations The security considerations regarding the specified interface will be evaluated in further revisions of this document. Laganier & Narayanan Expires November 23, 2007 [Page 18] Internet-Draft NETLMM MN-MAG Interface May 2007 9. IANA Considerations There are no IANA considerations. Laganier & Narayanan Expires November 23, 2007 [Page 19] Internet-Draft NETLMM MN-MAG Interface May 2007 10. Acknowledgments As usual in the IETF, this document is the result of a collaboration between many people. The authors would like to thanks (in alphabetical order) James Kempf, Alexandru Petrescu, Fred Templin and Christian Vogt for discussion and/or comments that helped with first versions of this document. Ian Chakeres contributed the reference network diagram. Julien Laganier is partly funded by Ambient Networks, a research project supported by the European Commission under its Sixth Framework Program. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Ambient Networks project or the European Commission. Laganier & Narayanan Expires November 23, 2007 [Page 20] Internet-Draft NETLMM MN-MAG Interface May 2007 11. References 11.1. Normative references [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997. [RFC2461] Narten, T., Nordmark, E., and W. Simpson, "Neighbor Discovery for IP Version 6 (IPv6)", RFC 2461, December 1998. [RFC2462] Thomson, S. and T. Narten, "IPv6 Stateless Address Autoconfiguration", RFC 2462, December 1998. [RFC3041] Narten, T. and R. Draves, "Privacy Extensions for Stateless Address Autoconfiguration in IPv6", RFC 3041, January 2001. [RFC3315] Droms, R., Bound, J., Volz, B., Lemon, T., Perkins, C., and M. Carney, "Dynamic Host Configuration Protocol for IPv6 (DHCPv6)", RFC 3315, July 2003. [RFC3748] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H. Levkowetz, "Extensible Authentication Protocol (EAP)", RFC 3748, June 2004. [RFC3810] Vida, R. and L. Costa, "Multicast Listener Discovery Version 2 (MLDv2) for IPv6", RFC 3810, June 2004. [RFC3971] Arkko, J., Kempf, J., Zill, B., and P. Nikander, "SEcure Neighbor Discovery (SEND)", RFC 3971, March 2005. [RFC3972] Aura, T., "Cryptographically Generated Addresses (CGA)", RFC 3972, March 2005. [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing Architecture", RFC 4291, February 2006. [I-D.ietf-dna-protocol] Kempf, J., "Detecting Network Attachment in IPv6 Networks (DNAv6)", draft-ietf-dna-protocol-05 (work in progress), March 2007. [I-D.ietf-netlmm-proxymip6] Gundavelli, S., "Proxy Mobile IPv6", draft-ietf-netlmm-proxymip6-00 (work in progress), April 2007. Laganier & Narayanan Expires November 23, 2007 [Page 21] Internet-Draft NETLMM MN-MAG Interface May 2007 11.2. Informative references [I-D.ietf-ipv6-over-ppp-v2] Varada, S., "IP Version 6 over PPP", draft-ietf-ipv6-over-ppp-v2-03 (work in progress), May 2007. [RFC4830] Kempf, J., "Problem Statement for Network-Based Localized Mobility Management (NETLMM)", RFC 4830, April 2007. [RFC4831] Kempf, J., "Goals for Network-Based Localized Mobility Management (NETLMM)", RFC 4831, April 2007. [RFC4832] Vogt, C. and J. Kempf, "Security Threats to Network-Based Localized Mobility Management (NETLMM)", RFC 4832, April 2007. [I-D.thaler-intarea-multilink-subnet-issues] Thaler, D., "Issues With Protocols Proposing Multilink Subnets", draft-thaler-intarea-multilink-subnet-issues-00 (work in progress), March 2006. Laganier & Narayanan Expires November 23, 2007 [Page 22] Internet-Draft NETLMM MN-MAG Interface May 2007 Appendix A. Version history A.1. -01 to -02 o revamped document structure to make it agnostic to attachment method (e.g. authentication, address-configuration, etc.). o specified per-MN subnet prefix, and point-to-point link model. o specified support for multicast. o various editorial changes. A.2. -00 to -01 o added DHCP access method including DHCP prefix delegation. o added new network reference diagram. o added definitions for NETLMM domain and NLMP. o updated NA proxying method for colliding CGAs. o added text on sending IP multicast messages to a Layer-2 unicast address. o added new Section 4.5 text on MNID/IP address binding. o added new Section 5. on multilink subnet issues. o various editorial changes. Laganier & Narayanan Expires November 23, 2007 [Page 23] Internet-Draft NETLMM MN-MAG Interface May 2007 Authors' Addresses Julien Laganier DoCoMo Communications Laboratories Europe GmbH Landsberger Strasse 312 Munich 80687 Germany Phone: +49 89 56824 231 Email: julien.ietf@laposte.net URI: http://www.docomolab-euro.com/ Sathya Narayanan Panasonic Digital Networking Lab Two Research Way, 3rd Floor Princeton, NJ 08536 USA Phone: +1 609 734 7599 Email: sathya@research.panasonic.com Laganier & Narayanan Expires November 23, 2007 [Page 24] Internet-Draft NETLMM MN-MAG Interface May 2007 Full Copyright Statement Copyright (C) The IETF Trust (2007). This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights. This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Intellectual Property The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79. Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr. The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org. Acknowledgment Funding for the RFC Editor function is provided by the IETF Administrative Support Activity (IASA). Laganier & Narayanan Expires November 23, 2007 [Page 25]