# **Self-Address Fixing Evolution BOF**

https://www1.ietf.org/mailman/listinfo/safe

#### Chairs:

- Colin Perkins
  <a href="mailto:csp@csperkins.org">csp@csperkins.org</a>
- Markus Isomaki < Markus.Isomaki@nokia.com>



# **Agenda**

| 09:00 | Introduction                   | (Chairs) |
|-------|--------------------------------|----------|
| 09:10 | Problem statement and scope    | (Wing)   |
| 09:25 | Survey of existing work        | (Barnes) |
| 09:55 | NAT/Firewall control with STUN | (Wing)   |
| 10:10 | Discussion                     |          |
| 10:50 | Future directions              | (Chairs) |

# **Intellectual Property**

- When starting a presentation you MUST say if:
  - There is IPR associated with your draft
  - The restrictions listed in section 5 of RFC 3978 apply to your draft
- When asking questions or making comments:
  - You MUST disclose any IPR you know of relating to the technology under discussion

Reference: RFC 3978/3979 and "Note Well" text

## **Aims of this BoF**

- To discuss a newly-proposed technique for using STUN to discover, query and control firewalls and NATs, that can eliminate UDP keep-alive traffic.
- To review the problem space and existing work, and decide if there is a need for new work in the area, and if the IETF is an appropriate home for that work.
  - The intent is not to form a new working group at this time, but to gauge interest in work in this area, and consider an appropriate future home for that work.

# **Problem Statement and Scope**

Dan Wing



### **Problem Statement**

- UDP applications that do not control their NATs need frequent UDP keepalives
  - IPsec NAT traversal
  - STUN
  - SIP-Outbound
- Frequent UDP keepalives consume battery power on wireless devices (e.g., 802.11, W-CDMA, WiMax)

# **SAFE Scope**

- Create a NAT control technique that:
  - Determines NAT and firewall keepalive interval
  - Adjusts NAT and firewall keepalive interval
  - Works with nested NATs and nested firewalls
  - Detects non-upgraded NATs, and reverts to pre-SAFE behavior
  - Uses source transport address for authorization

# Survey of Protocols to Control NAT and Firewalls

Mary Barnes

Authors: Lars Eggert, Pasi Sarolahti, Remi Denis-Courmont, Hannes Tschofenig

draft-eggert-middlebox-control-survey-01.txt



# **Summary of Protocols Analyzed**

- SOCKS
- NSIS NATFW NSLP
- MIDCOM
- SIMCO
- UPnP
- Diameter Gq', Rx+, Gx+

- NAT-PMP
- STUN
- RSIP
- ALD
- NLS
- AFWC

# **General Categorization of Protocols**

## **End-System-Initiated Protocols**

- Two Party Approach
  - UPnP
  - SOCKS
  - NAT-PMP
- Multi-Party Approach
  - STUN
  - STUN controlled NAT
  - NSIS NATFW NSLP
  - NLS

# **General Categorization of Protocols**

Third-Party-Initiated Approaches (with similar, general operational models):

- MIDCOM
- Diameter Gq', Rx+, Gx+
- SIMCO

Other more specialized approaches:

- RSIP
- AWFC
- ALD (v6 specific)

#### **UPnP** (Universal Plug and Play):

- Protocol between clients and IPv4 gateways.
- Provides "Edge" interconnection device between a residential LAN and a WAN
- Limited to middleboxes in the local network, as middlebox discovery is based on broadcasting.
- References: UPnP Forum Internet Gateway Device (IGD)Standardized Device Control Protocol v 1.0.

#### SOCKS:

- Uses "sockets" to represent and keep track of individual connections
- Allows application layer protocols to securely and transparently traverse firewalls, by providing a "shim" layer between application and transport layers.
- Reference: RFC 1928

#### **NAT-PMP (NAT Port Mapping Protocol):**

- Lightweight protocol between clients and IPv4 gateways.
- If first hop GW supports NAT-PMP, client can learn external IPv4 address.
- Expects the NAT to be the default gateway, thus doesn't work well in routed networks.
- Reference: draft-cheshire-nat-pmp

#### STUN (Simple Traversal of UDP through NATs):

- Allows clients to discover the presence of NATs and determine public addresses, while requiring no special behavior from NATs, but NATs should abide by RFC 4787.
- Requires STUN server on public network
- With proposed enhancements, incremental deployment and nested NATs can be supported. Optimized behavior requires support in the middleboxes.
- References: RFC 3489, draft-ietf-behave-3489bis, draft-wing-behave-natcontrol-stun-usage-04

#### **NSIS NATFW NSLP**

- NSIS uses a two layer architecture with a lower-layer transport protocol (NSIS Transport Layer Protocol (NTLP)).
- NAT/FW Network Signaling Layer protocol (an NSLP) is built on the NTLP.
- References: RFC 4080, draft-ietf-nsis-ntlp, draft-ietf-nsis-nslp-natfw

#### **NLS (Network Layer Signaling):**

- Lightweight firewall pin-holing application, designed to carry requests for firewall resources to firewalls along a path between two endpoints.
- Based on generic Network Layer Signaling Transport Layer
- References: draft-shore-nls-fw-00

#### **MIDCOM**

- Allows the endpoint to control a middlebox using a control protocol. Requires the middlebox vendors to implement and support the protocol.
- SNMP selected as the control protocol, thus a MIB has been defined.
- References: RFC 3303, RFC 4097, draft-ietf-midcom-mib

#### SIMCO:

- NEC's "SIMPLE" Middlebox Communication protocol
- Complies with the MIDCOM Semantics (RFC 3989, draft-ietf-midcomrfc3989bis)
- Reference: RFC 4540

#### Diameter Gq', Rx+, Gx+

- Generally complies with MIDCOM requirements (RFC 3304) and was originally based on DIAMETER proposal in MIDCOM protocol evaluation (RFC 4097).
- The protocol is connection-oriented at both the transport and application levels.
- References: RFC 4097, ITU

#### **RSIP** (Realm Specific IP)

- With RSIP with tunneling, the private realm host application knows the public realm IP addresses and port numbers. This requires an RSIP server and a tunneling protocol be implemented in the middlebox and an RSIP client and the tunneling protocol be implemented in the private realm host.
- One of 5 protocols proposed as the MIDCOM Protocol.
- References: RFC 3103, RFC 4097

#### **ALD (Application Listener Discovery):**

- Specifically for IPv6 stateful firewalls.
- Uses ICMPv6 for signaling
- Auto-configured through a specific router advertisement.
- Reference: draft-woodyatt-ald-01

#### **AFWC** (Authorized IP Firewall Control Application):

- Provides an interface that allows network entities to request firewall and NAT services and resources. An instance of a protocol that provides authorizations and other security services, and inter-works with other such instances
- AFWC uses its authorization facilities to provide network administrators more control over network border admission. Relies on crypto layer for authorization.
- References: draft-shore-afwc-00

## **Protocol Comparison: Deployment**

| Protocol               | Implemented<br>(Yes/No) | Widely Deployed<br>(Yes/No) | Supports Incremental deployment (Yes/No) |
|------------------------|-------------------------|-----------------------------|------------------------------------------|
| UPnP                   | Yes                     | Yes                         | No                                       |
| SOCKS                  | Yes                     | Yes                         | Yes                                      |
| NAT-PMP                | Yes                     | No                          | No                                       |
| STUN                   | Yes                     | Yes                         | Yes                                      |
| STUN (Control)         | Yes                     | No                          | Yes                                      |
| NSIS NATFW NSLP        | Yes                     | No                          | No                                       |
| NLS                    | Yes                     | No                          | No                                       |
| MIDCOM                 | No                      | No                          | No                                       |
| SIMCO                  | Yes                     | No                          | No                                       |
| Diameter Gq', Rx+, Gx+ | ?                       | No                          | No                                       |
| RSIP                   | Yes                     | No                          | No                                       |
| ALD                    | Yes                     | No                          | No                                       |
| AFWC                   | Yes                     | No                          | Yes                                      |

## **Protocol Comparison: Middle-box interactions**

| Protocol               | Keepalive required (Yes/No) | Interacts directly with MB? (Yes/No) | Security between MB and endpoint? |
|------------------------|-----------------------------|--------------------------------------|-----------------------------------|
| UPnP                   | No                          | Yes                                  | Yes (but unused)                  |
| SOCKS                  | No                          | No                                   | No                                |
| NAT-PMP                | No                          | No                                   | No                                |
| STUN                   | Yes                         | No                                   | No                                |
| STUN (Control)         | No                          | Yes                                  | No                                |
| NSIS NATFW NSLP        | No                          | Yes                                  | Yes                               |
| NLS                    | No                          | Yes                                  | Yes                               |
| MIDCOM                 | No                          | Yes                                  | Yes                               |
| SIMCO                  | No                          | Yes                                  | Yes                               |
| Diameter Gq', Rx+, Gx+ | No                          | Yes                                  | Yes                               |
| RSIP                   | No                          | Yes                                  | Yes                               |
| ALD                    | No                          | Yes                                  | No                                |
| AFWC                   | No                          | Yes                                  | Yes (through crypto layer)        |

## **Protocol Comparison: Topology/environments**

| Protocol               | Topology<br>Aware | Supports Nested<br>NATs (Yes/No) | Supports diverse environments/endpoints |
|------------------------|-------------------|----------------------------------|-----------------------------------------|
| UPnP                   | No                | No                               | No                                      |
| SOCKS                  | No                | Yes                              | No                                      |
| NAT-PMP                | No                | No                               | No                                      |
| STUN                   | Yes               | Yes                              | Yes                                     |
| STUN (Control)         | Yes               | Yes                              | Yes                                     |
| NSIS NATFW NSLP        | Yes               | Yes                              | Yes                                     |
| NLS                    | Yes               | Yes                              | Yes                                     |
| MIDCOM                 | Yes               | Yes                              | Yes                                     |
| SIMCO                  | Yes               | Yes                              | Yes                                     |
| Diameter Gq', Rx+, Gx+ | Yes               | Yes                              | Yes                                     |
| RSIP                   | Yes               | Yes                              | No                                      |
| ALD                    | No                | No                               | No                                      |
| AFWC                   | Yes               | Yes                              | Yes                                     |

# Summary (1)

- Many NAT/FW traversal mechanisms and protocols have been implemented, however only a few are widely deployed: SOCKS, UPnP, STUN
- Only a few of the solutions effectively support incremental deployment: STUN (per draft-wing-behave-nat-controlstun-usage-04), SOCKS, and AFWC
- Several of the protocols require Keep-alive mechanisms, which can result in excessive chattiness that has performance impacts in certain environments: STUN (without NAT control)

# Summary (2)

- Majority require direct interactions with middle-box
  - This can be a barrier to widespread deployment of these protocols due to lack of middle-box vendor support.
  - In addition, several of the protocols (MIDCOM, SIMCO, DIAMETER) don't provide a way to find on-path protocol-controlled NATs/FWs.
- About half the protocols require security between the endpoint and the middle-box. In one sense, this security relationship provides a more robust solution, but it can also be a barrier to deployment.
- Over half current protocols are aware of topology
- The majority of the protocols support Nested NATs.
- Over half the protocols can be used in diverse environments, in terms of supporting a variety of types of network deployments, endpoints and applications.
  - For the other half, enterprise deployment is often an issue: UPnP and NAT-PMP.

# NAT Control STUN Usage "STUN Control"

Dan Wing Jonathan Rosenberg Hannes Tschofenig

draft-wing-behave-nat-control-stun-usage-05.txt



## **Outline**

- Motivation and goals
- Procedures:
  - with firewalls
  - with one NAT
  - with nested NATs
  - with nested NATs with overlapping IP addresses
- Summary of benefits
  - Why STUN Control will succeed

## **Motivation**

- Reduce network traffic
  - Keepalive chatter to STUN server
    - Battery-operated wireless devices
  - Binding discovery chatter to STUN server
- Retain STUN/ICE's ability to work on any network
  - Enterprise networks
  - ISPs that NAT their subscribers
  - Home networks

## **STUN Control: Initial Goals**

- UDP only
- Extend the NAT's binding lifetime
  - Reduces keepalive chatter

# **Implementation Available**

http://www.christian-dickmann.de/stun.php

# **Procedure with Firewall**

## **Tagging Procedure with Firewalls**

- Endpoint sends STUN request and includes 'please tag' attribute
- Firewall sees STUN request with that attribute, remembers it
- Firewall tags the response (with same STUN transaction-id and inverted 5-tuple) with firewall's IP address



# **Procedure with one NAT**

## **One NAT Procedure Overview**

- 1. Learn IP address of outer-most NAT
- 2. Using that NAT's embedded STUN server, query and extend UDP binding lifetime

### 1. Learn IP address of outer-most NAT

• This is classic STUN (RFC3489)



# 2. Communicate to NAT's embedded STUN Server

- Adjust binding lifetime
- Learn UDP port "B"
- Learn IP address and UDP port "A" (ourself)



# **Procedure with nested NATs**

### **Nested NATs Procedure Overview**

- 1. Learn IP address of outer-most NAT
- 2. Using that NAT's embedded STUN server, query and extend UDP binding lifetime, and learn next-inner NAT
- Using next-inner NAT's embedded STUN server, query and extend its UDP binding lifetime, and learn next-inner NAT
- 4. repeat

### 1. Learn IP address of outer-most NAT

• This is classic STUN (RFC3489)



# 2. Communicate to outer-most NAT's embedded STUN Server

- Adjust binding lifetime of NAT "C"
- Learn UDP port "C"
- Learn IP address and UDP port "B"



# 3. Communicate to next-closer NAT's embedded STUN Server

- Adjust binding lifetime of NAT "B"
- Learn IP address and UDP port "A" (ourself)



# Procedure with nested NATs with overlapping IP addresses

## **NATs** with Overlapping IP addresses

As described currently, this is not well detected



## **Proposed solution: NAT-ID**

 Outer NAT query next-innermost NAT for its NAT-ID (shown in red)



# **Summary of Benefits**

## **STUN Control: Summary of Benefits**

- Preserves STUN's ability to work with nested NATs
- Extend NAT binding duration of all NATs along path
  - Reduces keep-alive chatter
- Automatically learns NAT path topology
  - Allows ICE to better optimize media path

#### **STUN Control: Middle box interactions**

| Protocol               | Keepalive required (Yes/No) | Interacts directly with MB? (Yes/No) | Security between MB and endpoint? |
|------------------------|-----------------------------|--------------------------------------|-----------------------------------|
| UPnP                   | Yes                         | Yes                                  | No                                |
| SOCKS                  | No                          | No                                   | No                                |
| NAT-PMP                | No                          | No                                   | No                                |
| STUN                   | Yes                         | No                                   | No                                |
| STUN Control           | No                          | Yes                                  | No                                |
| NSIS NATFW NSLP        | No                          | Yes                                  | Yes                               |
| NLS                    | No                          | Yes                                  | Yes                               |
| MIDCOM                 | No                          | Yes                                  | Yes                               |
| SIMCO                  | No                          | Yes                                  | Yes                               |
| Diameter Gq', Rx+, Gx+ | No                          | Yes                                  | Yes                               |
| RSIP                   | No                          | Yes                                  | Yes                               |
| ALD                    | No                          | Yes                                  | No                                |
| AFWC                   | No                          | Yes                                  | Yes (through crypto layer)        |

## **STUN Control: Topology/environments**

| Protocol               | Topology Aware<br>(Yes/No) | Supports Nested NATs (Yes/No) | Supports Diverse environments/endpoints |
|------------------------|----------------------------|-------------------------------|-----------------------------------------|
| UPnP                   | No                         | No                            | No                                      |
| SOCKS                  | No                         | Yes                           | No                                      |
| NAT-PMP                | No                         | No                            | No                                      |
| STUN                   | Yes                        | Yes                           | Yes                                     |
| STUN Control           | Yes                        | Yes                           | Yes                                     |
| NSIS NATFW NSLP        | Yes                        | Yes                           | Yes                                     |
| NLS                    | Yes                        | Yes                           | Yes                                     |
| MIDCOM                 | Yes                        | Yes                           | Yes                                     |
| SIMCO                  | Yes                        | Yes                           | Yes                                     |
| Diameter Gq', Rx+, Gx+ | Yes                        | Yes                           | Yes                                     |
| RSIP                   | Yes                        | Yes                           | No                                      |
| ALD                    | No                         | No                            | No                                      |
| AFWC                   | Yes                        | Yes                           | Yes                                     |

## Why STUN Control Will Succeed

- Works with nested NATs
- Works on routed networks
- Incrementally deployable
  - If STUN Control is unavailable, the host falls back to normal keepalive behavior
- No additional security policy/configuration in the NAT

# **Questions and Discussion**

...on the technology



## **Future Directions**

Colin Perkins Markus Isomaki



## **Future Directions**

- Aim of this BoF is not to form a new working group
- Rather, decide if there is a need for new work in the area, and if the IETF is an appropriate home for that work
  - If "yes" to both, will work with IESG to decide if the work fits an existing group, or if a working group forming BOF is needed at IETF 71

#### **Future Directions**

- Will ask the following three questions:
  - Are some functional requirements or deployment considerations left unsatisfied by existing protocols?
  - Is there agreement that the IETF should consider developing a new NAT control mechanism to address these requirements?
  - Is the NAT Control STUN usage a reasonable approach to NAT control, addressing the requirements?

## Requirements

- Will ask the following three questions:
  - Are some functional requirements or deployment considerations left unsatisfied by existing protocols?
  - Is there agreement that the IETF should consider developing a new NAT control mechanism to address these requirements?
  - Is the NAT Control STUN usage a reasonable approach to NAT control, addressing the requirements?

### **NAT Control**

- Will ask the following three questions:
  - Are some functional requirements or deployment considerations left unsatisfied by existing protocols?
  - Is there agreement that the IETF should consider developing a new NAT control mechanism to address these requirements?
  - Is the NAT Control STUN usage a reasonable approach to NAT control, addressing the requirements?

## **NAT Control STUN Usage**

- Will ask the following three questions:
  - Are some functional requirements or deployment considerations left unsatisfied by existing protocols?
  - Is there agreement that the IETF should consider developing a new NAT control mechanism to address these requirements?
  - Is the NAT Control STUN usage a reasonable approach to NAT control, addressing the requirements?