

Understanding Global Internet Routing Stability Using Link Weight

Mohit Lad, Jonathan Park, Tiziana Refice, Lixia Zhang

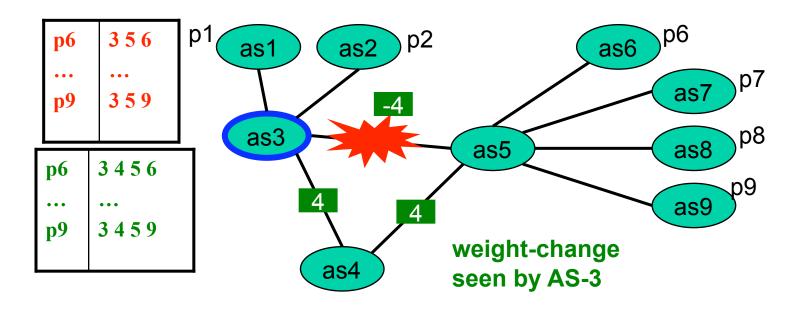
Feburary 2008

Goal

- Study Internet routing stability by examining data collected from multiple vantage points
 - identify where routing changes occur
 - Locate instabilities, not explain why they occur
 - Identify repeating instabilities over time
 - Identify the scope of routing events
 - How big a splash each incident makes

Challenges: Multi-dimensional data

- Large number of destinations (> 250K)
- Multiple vantage points
 - Each sees a 2-dimensional space of the above
 - Different vantage points see very different pictures
- Changes over time


Our Approach

- Large number of destinations
 - Measure "link weight changes" to catch big routing changes
- Multiple vantage points
 - Measure link weight changes from *each vantage point*
- Changes over time
 - Slice time into bins and investigate *each bin*

Our approach

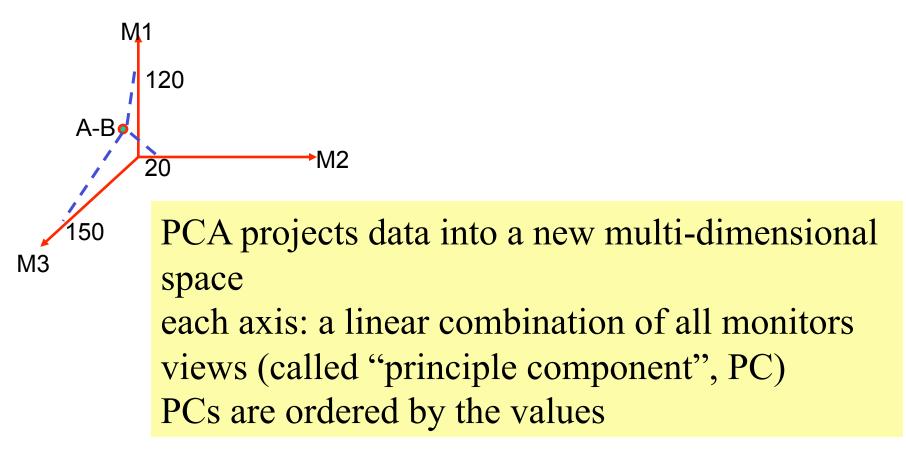
- Apply Principal Component Analysis (PCA) to identify biggest routing change events
 - big = a combination of (1)the magnitude of changes; (2)number of monitors seeing the change
 - Later we separate out which is which

By looking at link weight changes one can

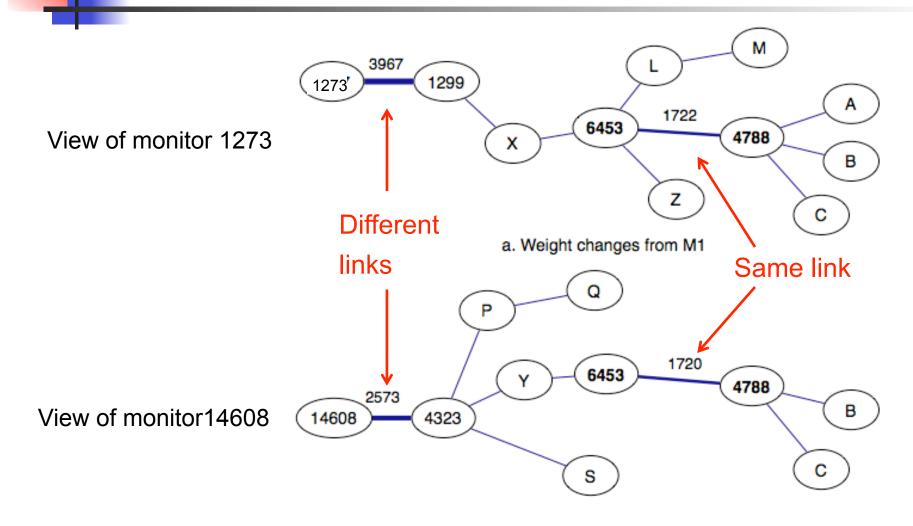
capture common behavior across multiple prefixes

E.g. affected routes seen by AS 3 share a common link as3-as5.

capture changes seen by multiple monitors

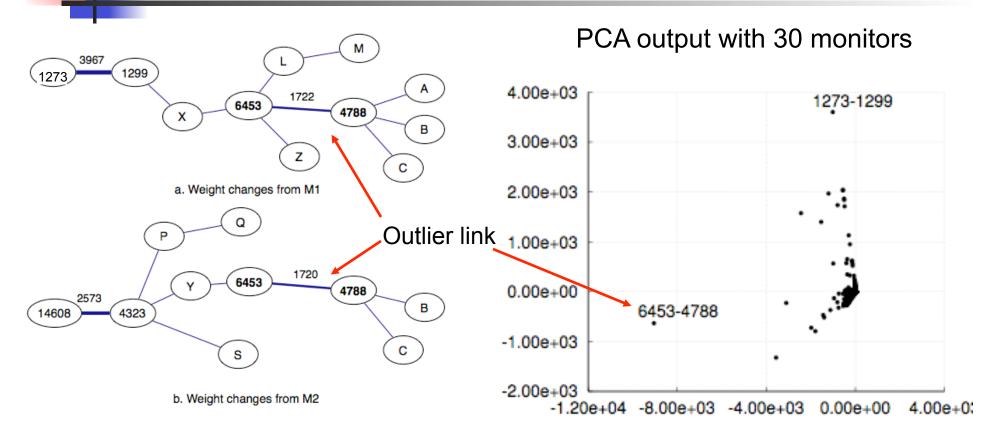

Eg. AS-1 sees routes to p6,p7,p8,p9 affected, while AS-6 sees routes to p1,p2 affected, yet looking both see weight changes on link as3-as5.

Computing link weight changes


- Start with a full routing table: compute link weight w(a,b) for *each AS link* seen by *each monitor*
- Group BGP updates into time bins of every T seconds
- For each time bin, each AS link, seen by each monitor
 - If a route change results in a LW change, record the prefix
 - $\delta(a,b) = \#$ prefixes that caused weight changes on link (a,b).
- Resulting matrix: links = rows, monitors = columns
 - X i,j: Weight change on link i seen by monitor j.
- Input the matrix into PCA

An intuitive explanation of PCA

 link (A-B) weight changes seen by 3 monitors, showing as a point in a 3-dimension space



Example of how PCA helps

b. Weight changes from M2

Example of how PCA helps

Each axis represents a combination of multiple monitors

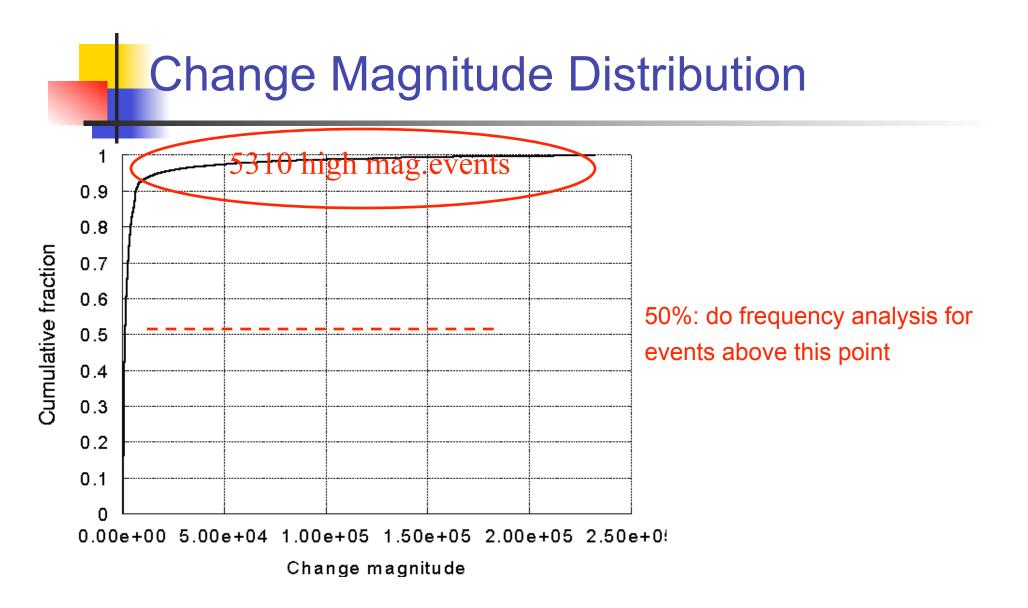
Common outlier stands out after combining views from multiple points

Applying to long term BGP data

- Data set: RouteViews and RIPE
 - Chose a subset of 30 monitors that do not share large amounts of routes
- Duration: Jan-Dec 2007
- Group updates into 10-min bins
- Apply PCA to data in each bin to find outlier links
 - If a time bin shows noticeable magnitude changes, we call it an event

30 monitors selected

1 22548-200.160.0.130-rrc15 2 4608-202.12.29.64-rrc00 3 2493-206.186.255.223-oreg 4 28895-193 232 244 138-rrc13 5 20483-193 232 244 82-rrc13 6 4777-202.12.28.190-rrc00 7 2018-196.13.250.1-oreg 8 16186-213 179 39 65-rrc00 9 39637-193 239 116 56-rrc03 10 14608-209.161.175.4-oreg 11 34347-193.203.0.124-rrc05 12 8596-193.203.0.130-rrc05 13 6881-195.47.235.100-rrc00 14 21202-194.68.123.139-rrc07 15 6695-80.81 192 158-rrc12

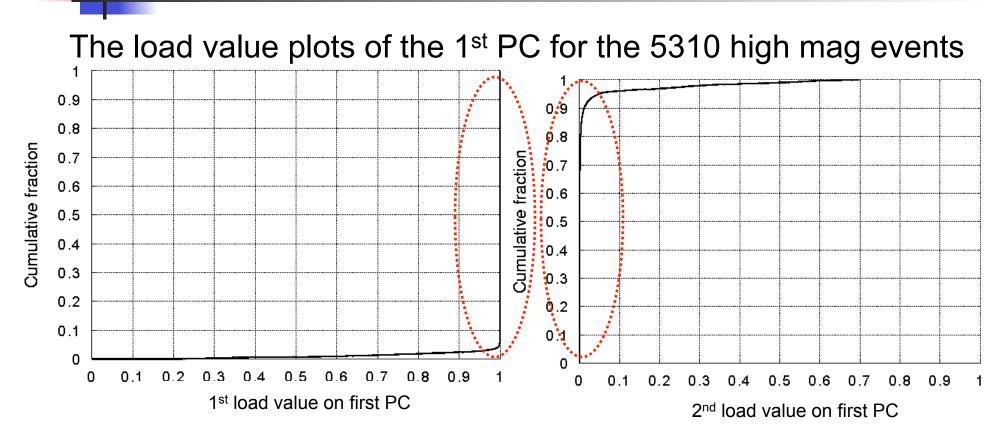

16 26943-195.69.145.49-rrc03 17 8419-195.66.224.121-rrc01 18 15837-80.81.192.126-rrc12 19 2857-80 81 192 8-rrc12 20 12350-192.65.185.157-rrc04 21 20932-192.65.185.142-rrc04 22 3130-147.28.7.1-oreg 23 24875-195.69 144 126-rrc03 24 3741-168 209 255 2-rrc00 25 2152-137.164.16.12-oreg 26 11686-205.241.232.55-oreg 27 293-134.55.200.31-oreg 28 6539-216.18.31.102-oreg 29 5056-167.142.3.6-oreg 30 2905-196.7.106.245-oreg

Questions from data

- Q1:Are there any big events during the one year period?
 - What is the scope of each event (how many monitors see big routing changes?)
- Q2: are there links that appear repeatedly as outliers?
 - What is the scope of the event (how many monitors see big routing changes?)

Magnitude analysis

Frequency analysis

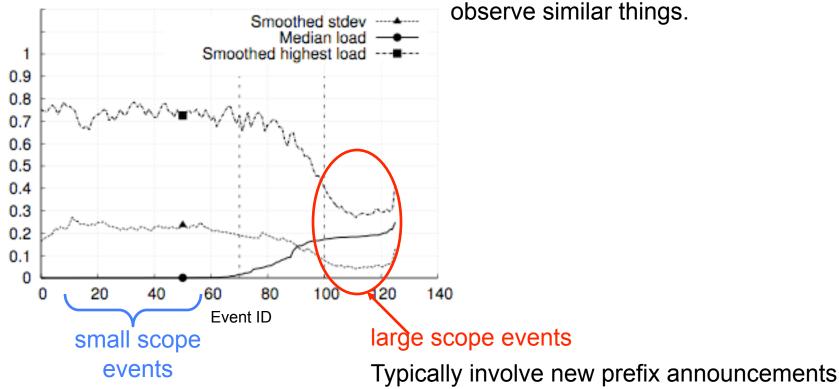


Higher x indicates bigger event

How to gauge the scope of observed changes

- For each principal component, understand how many monitors are influencing the component by looking at load values
 - If PC1=0.95 x m1 + 0.15 x m2 + 0.005 x m3, then
 PC1 mostly due to m1, i.e. locally observed change
 - If PC1=0.23 x m1+ 0.22 x m2 + 0.21 x m3, then nonlocal change, observed by multiple monitors
- Start by examining the load values of the first PC

Qualifying high magnitude changes

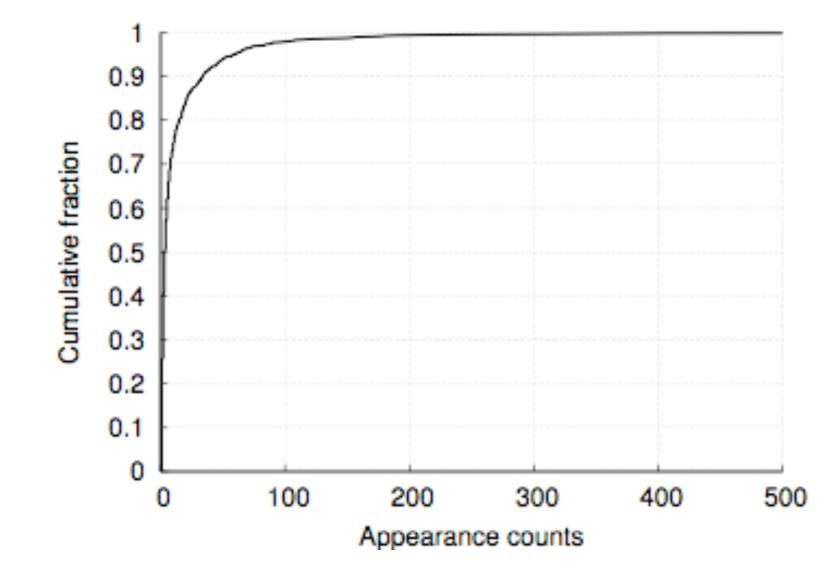

Most high magnitude change influenced by a single monitor (left) the second most influential monitor is much farther behind (right) Almost all high magnitude changes are local events

Non-local events

1. Load value of a monitor indicates how much it influences the component.

2. Plot median load and standard deviation of load values of monitors

3. Low standard deviation indicates monitors observe similar things.


Sorting out new prefixe announcements

- a set of prefixes S1 usually announced byASx
- when ASx announces a set of prefixes S2, with S2 much longer than S1 for a limited time interval
 - Announcement of deaggregated prefixes: if S2 covers (almost) entire prefix space as S1
 - Announcement of new uncovered prefixes: if there is (almost) no overlap in the address space covered by S1 and S2

Here is what we caught in 2007

AS-link	Count	Origin AS	category
7018-7015	4	7015	
2200-3356	3	3356	
3549-11456	2	11456	new uncovered
1237-2200	1	2200	prefixes
28513-8151	1	8151	
6453-4788	2	4788	
7018-4788	1	4788	
3257-5486	2	5486	de-aggregation
1239-209	2	209	
17622-9394	1	9394	
7018-33650	1	33650	

Repeated Outliers over time

Impact scope of instable links

- Almost all the top 20 links made local impact
 - i.e. only one monitor saw big link weight change
- Handful of cases of repeated problems that are nonlocal in scope (seen by more than one monitor)
 - Link between AS 6453 (Teleglobe) and AS 30890 (Evolva Telecom) appears 83 times
 - 2nd highest scope in the repeatedly appearing outlier link set
 - 500 routes to AS 30890 or using AS 30890 as an intermediate node in AS-PATH switched to the alternate longer route 6453-5588-5606-30890

Summary of preliminary results

- High-magnitude events occur infrequently; most of them are local in scope
- The large-scope events usually involve
 - new prefix announcements, or
 - complete loss of multiple routes (e.g. diconnection of a stub with tens of routes---rare)
- A small number of links involved in a large number of noticeable events (local impact)

What to carry away

- PCA: a useful tool to deal with data from large number of vantage points
- Link weight and weight changes as a simple way to measure routing dynamics
 - the scripts of doing all the computations in this talk are available online
 - LinkRank: visualizing link weight changes

http://linkrank.cs.ucla.edu/

http://www.cs.ucla.edu/~mohit/submitted/bgpPCA.pdf 23

View activity snapshots for all Oregon peers

