Trust Anchor Management Requirements

Carl Wallace
cwallace@cygnacom.com
Background

• Initial work was done for the TAM BOF held during Chicago meeting last summer

• BOF did not yield a new working group
 – Work was moved to PKIX
 – New PKIX charter has been established
Working group comments

1. Targets for management
2. TA terminology
3. Types of associated data
4. Document organization
Targets for management

• Three targets have been suggested:
 – Individual TAs within a trust store
 • Focus of draft
 – Entire trust store
 • Suggested by Denis
 – Validation policies
 • Suggested by Denis
TA Terminology

• The TA definition in the draft essentially includes a fifth item under the 3280 statement of what a trust anchor includes:
 – (5) optionally, associated data used to constrain the types of information for which the trust anchor is authoritative

• Denis prefers TAAD to TA for this
Types of associated data

• Additional types
 – Revocation status checking mechanisms and parameters

• Nature of association
 – Per TA vs. Per group of TAs
Document organization

- Draft history
 - Initial draft submitted for TAM BOF,
 - Initial PKIX draft before Vancouver meeting (same content as last TAM BOF version)
 - -01 submitted in February (minor edits vs. -00)
- Content will be re-factored into a requirements draft shortly after IETF71
 - Requirements presently in security considerations will be moved into the body of the draft
 - Requirement description and rationale will be presented
Distilled Requirements

• Provide transport independence and applicability to session-oriented and store-and-forward contexts

• Enable a trust anchor manager to:
 – Discover trust stores
 – Report trust store contents
 – Add trust anchors to a trust store
 – Remove trust anchors from a trust store
 – Replace entire trust store (new requirement)

• Enable generation of messages intended for:
 – All stores that recognize TA manager
 – A group of stores (or groups of stores)
 – An individual store
Distilled requirements (cont.)

• Enable secure transfer of control of trust store management responsibility from one TA manager to another
 – Rekey is one example
• Support RFC 3280 certification path validation
• Enable usage of trust anchors for purposes other than certification path validation
 – Include a key identifier in trust anchor content to enable CMS-based applications
• Enable management of trust anchors that do not serve as trust anchors for certification path validation
Distilled requirements (cont.)

- Support management of trust anchors represented as self-signed certificates or as a distinguished name and public key information
- Enable authentication of device that produced a report listing the contents of a trust anchor store
 - Enable replay detection for TA store reports
- Enable the representation of constraints that influence certification path validation or otherwise establish the scope of usage of the trust anchor public key
 - Enable delegation of privileges
 - Limit trust anchor managers to a particular scope
Distilled requirements (cont.)

- Enable confirmation of TA mgmt. message integrity
- Enable authentication of TA mgmt. message originator and confirmation of authorization to originate TA mgmt. messages
- Reduce reliance on out-of-band trust mechanisms
- Enable replay detection without requiring a reliable source of time
- Support recovery from compromise of trust anchor private key
Comparison of ValidationPolicy and TrustAnchorInfo

ValidationPolicy ::= SEQUENCE {
 validationPolRef ValidationPolRef,
 validationAlg [0] ValidationAlg OPTIONAL,
 userPolicySet [1] SEQUENCE SIZE (1..MAX) OF OBJECT IDENTIFIER OPTIONAL,
 inhibitPolicyMapping [2] BOOLEAN OPTIONAL,
 requireExplicitPolicy [3] BOOLEAN OPTIONAL,
 inhibitAnyPolicy [4] BOOLEAN OPTIONAL,
 trustAnchors [5] TrustAnchors OPTIONAL,
 keyUsages [6] SEQUENCE OF KeyUsage OPTIONAL,
 extendedKeyUsages [7] SEQUENCE OF KeyPurposeId OPTIONAL,
 specifiedKeyUsages [8] SEQUENCE OF KeyPurposeId OPTIONAL }

TrustAnchorInfo ::= SEQUENCE {
 version [0] TAMPVersion DEFAULT v2,
 pubKey PublicKeyInfo,
 keyId KeyIdentifier,
 taType TrustAnchorType,
 taTitle TrustAnchorTitle OPTIONAL,
 certPath CertPathControls OPTIONAL }

CertPathControls ::= SEQUENCE {
 taName Name,
 selfSigned [0] Certificate OPTIONAL,
 policyFlags [2] CertPolicyFlags OPTIONAL,
 clearanceConstr [3] CAClearanceConstraints OPTIONAL,
 nameConstr [4] NameConstraints OPTIONAL }
Comparison of ValidationPolicy and TrustAnchorInfo

• ValidationPolicy associates data with groups of TAs vs. per TA
• Mainly common information, differences include:
 – ValidationPolicy has key usages
 – TrustAnchorInfo has name constraints, Apex information, CMS content constraints, key identifier, friendly name
• TrustAnchorInfo meets several requirements not met by ValidationPolicy, including
 – Representation of TA not used for path validation
 – Recovery from compromise
 – Self-signed or DN/key representation
Questions?