Deployment Models for PCN-Based Admission Control and Flow Termination Using Packet-Specific Dual Marking (PSDM)
draft-menth-pcn-psdm-deployment-00

Michael Menth, presented by Philip Eardley

www3.informatik.uni-wuerzburg.de
What is PSDM?

- An encoding (Experimental extension of Baseline encoding)
 - draft-menth-pcn-psdm-encoding-00
- A deployment model
 - draft-menth-pcn-psdm-deployment-00
PSDM Encoding

<table>
<thead>
<tr>
<th>DSCP</th>
<th>00</th>
<th>10</th>
<th>01</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSCP1</td>
<td>Not-PCN</td>
<td>NM</td>
<td>EXP</td>
<td>PM</td>
</tr>
<tr>
<td>DSCP1</td>
<td>Not-PCN</td>
<td>NM (not-ExM)</td>
<td>NM (not-ThM)</td>
<td>PM</td>
</tr>
</tbody>
</table>

- **Baseline**
- **PSDM**

- Same Pros as baseline (single DSCP, compatible with tunnelling)
- But can distinguish threshold & excess traffic marking

Deployment Models for Packet-Specific Dual Marking (PSDM)
PSDM Usage

- PCN ingress nodes mark
 - Data packets encoded with “NM (not-ExM)“
 - Probe packets encoded with „NM (not-ThM)“

- PCN interior nodes
 - Threshold meter: meters all PCN traffic
 - Excess traffic meter: meters only “NM (not ExM)” pkts

- PCN egress nodes interpret
 - PM on data packet = excess-traffic-marked pkt
 - PM on probe pkt = threshold-marked pkt
Example: Probe-Based Admission Control for IEAs

RSVP PATH msg is implicit ‘probe’
Probe-Based Admission Control for Individual Flows

- **Assumption**
 - Admission requests triggered by external protocol, e.g. RSVP

- **RSVP sends**
 - PATH message from ingress to egress (downstream)
 - RESV message from egress to ingress (upstream)

- **Implicit probing**
 - Ingress marks PATH message with VOICE-ADMIT and not-ThM
 - Egress receives PATH message
 - If PATH message is marked, it sends PATH-TEAR
 - If PATH message not marked, it forwards PATH msg downstream
 - Egress forwards returning RESV to ingress
 - Ingress accepts admission request when its first RESV arrives

- **“Good probing”**
 - No extra probe traffic
 - No extra admission delay
Example: Observation-Based AC with Probing

Send regular ‘probes’ on IEA
Basic principle
- Ingress node keeps admission state \(K \) per IEA
 - \(K=\text{accept} \): accept new flows for this IEA
 - \(K=\text{block} \): block new flows for this IEA
- Ingress node sends probe packets to egress node
- Egress node
 - Observes probe packets
 - Controls \(K \) at ingress by sending admission-stop and admission-continue msgs

“Good probing”
- No per-flow probe packets
- No admission delay

Alternatives for egress nodes to influence new \(K \)
- CLE-based AC with probes
 - Calculate percentage CLE of marked probe packets based on measurement intervals
 - If \(\text{CLE}<T_{\text{ACont}} \), send admission-continue
 - If \(\text{CLE} \geq T_{\text{AStop}} \), send admission-stop
- Observation-based AC with probes
 - If marked probe packet observed
 - If \(K=\text{accept} \), set a timer and send admission-stop
 - If \(K=\text{block} \), reset timer
 - If timer expires, send admission-continue
Benefits of PSDM

- PSDM requires only a single DSCP (VOICE-ADMIT)
- Admission control
 - Probing guarantees correct AC decisions even for empty IEAs
 - Risk of over-admission minimized especially for small IEAs
 - Implicit per-flow probing supports multipath routing
- Flow termination
 - Excess marking based on supportable rate (SR) provides information about the strength of the SR-overload.
 - Use either measured rate termination (MRT) or marked flow termination (MFT)
 - MFT supports multipath routing

Deployment Models for Packet-Specific Dual Marking (PSDM)
Conclusion

PSDM encoding
- Requires only a single DSCP (VOICE-ADMIT)
- Supports two different marking schemes

PSDM deployment requires
- Existing flow termination mechanisms
- New probe-based admission control mechanisms
 - “Good probing“ – no additional delay
 - IEA-based AC possible
 - Implicit per-flow probing possible re-using RSVP signalling

Benefits
- New AC works with small IEAs
- New AC works with multipath routing
Spare slides
Pre-Congestion Notification (PCN) – Concept

Pre-congestion information is coded into packet headers and carried to PCN egress nodes.
Problem Statement

- ECN field of VOICE-ADMIT DSCP reused for PCN encoding
 - Only CE codepoint appropriate for marking due to tunneling constraints

- Potential solutions
 - Redefine tunneling (draft-briscoe-tsvwg-ecn-tunnel) and use 3-in-1 encoding (draft-briscoe-pcn-3-in-1-encoding)
 - Long-term process and potential problems with legacy equipment
 - Use only single marking scheme for AC and FT (draft-charny-pcn-single-marking)
 - AC and FT do not work well for ingress-egress aggregates (IEAs) with only little traffic
 - [Link](http://www3.informatik.uni-wuerzburg.de/~menth/Publications/papers/Menth08-Sub-8.pdf)
 - [Link](http://www3.informatik.uni-wuerzburg.de/~menth/Publications/papers/Menth08-Sub-9.pdf)
 - Use VOICE-ADMIT and another DSCP to get two different CE codepoints to support two different marking schemes (draft-moncaster-pcn-3-state-encoding)
 - Requires two DSCPs for marking, not likely to be accepted
 - Use PSDM encoding (draft-menth-pcn-psdm-encoding)
 - Only one DSCP, perfect AC and FT behavior, but requires new edge-behavior (this proposal)
 - [Link](http://www3.informatik.uni-wuerzburg.de/~menth/Publications/papers/Menth08-Sub-14.pdf)
A Short Note on Probing

- Probe traffic
 - Definition: all PCN traffic that is not data traffic and which is possibly used for AC decisions

- ”Bad probing“
 - Extra probe packets per flow
 - Introduces additional delay for admission decision when PCN ingress node waits for response from PCN egress node

- ”Good probing“
 - No explicit probe packets per flow
 - No additional admission delay

- PSDM deployment uses ”good probing“ for AC
Review: PSDM Codepoints

- Prerequisite for PCN traffic: DSCP=VOICE-ADMIT
- Redefinition of ECN field
 - 00: no PCN traffic (not-PCN)
 - 10: not-excess-marked PCN traffic (not-EcM)
 - Subject to excess marking
 - Excess marking meters and possibly re-marks only not-EcM-marked traffic
 - 01: not-threshold-marked PCN traffic (not-ThM)
 - Subject to threshold marking
 - Threshold marking meters all PCN traffic and possibly re-marks only not-ThM-marked traffic
 - 11: marked PCN traffic (M)
PSDM Usage

- PCN ingress nodes mark
 - Data packets with not-EcM
 - Probe packets with not-ThM

- PCN egress nodes interpret
 - Data packets
 - Not-EcM = not marked
 - M = marked;
 - Supportable rate (SR) exceeded
 - Terminate traffic!
 - Rate of marked data traffic is estimate for SR-overload
 - Support flow termination; use any method
 - Probe packets
 - Not-ThM = not marked
 - M = marked
 - Admissible rate (AR) exceeded
 - Stop admission!
 - Support admission control; use probe-based AC methods (=contribution of this draft)