Clearance Attribute and Authority Constraints Certificate Extension
draft-ietf-pkix-authorityclearanceconstraints-00.txt

IETF 73 – November 2008
Sean Turner
Santosh Chokhani
What’s new?

• Published as WG ID.
• Section 1:
 – Added:
 • The clearance attribute can be in a public key or
 attribute certificate.
 • The authority clearance constraints extension can
 be in a CA’s or AA’s public key certificate.
 – Provided rationale for why clearance might be
 included in a public key and/or attribute
 certificate.
What’s new?

• Section 2:
 – Required single value for clearance.
 – Aligned ASN.1 with module (uses ’02 ASN.1 syntax).

• Section 5: Amended section so it’s more like Section 4.

• Section 4/5/6: Added text to explain computation of security categories intersection.

• Section 7: Defined recommended security categories.
What’s left?

• Agree that Authority Clearance Constraints should be optionally critical.
 – We proposed it’s the CA’s choice, but others felt that it should be critical.

• Come to closure on security categories intersection section.
Example: Notation

\{
\{OID X, 111010, [OID A, 10110] [OID B 00110]\}
\{OID Y, 111010, [OID C, 10110] [OID D 00110]\}\}

• Each clearance is embedded in \{ \}
• Different clearances represented using different color fonts (e.g., black and blue)
• OID X, Y, Z etc. represent security policy OID
• Classification represented by bits (e.g., 1001)
• Each security category is embedded in []
• OID A, B, C, D etc. represent Type OID for security category
• Security category value is bit string a la recommended securityCategory value structure in the I-D (e.g.0101)
Example: Certificate Contents

• **ACC in TA**
 - \{\{OID X, 111010, [OID A, 10110] [OID B 00110]\} {OID Y, 111010, [OID C, 10110] [OID D 00110]}\}
 - Two clearances (X and Y)
 - Each clearance with two security categories (A&B, C&D)

• **ACC in TA → CA**
 - \{\{OID X, 110010, [OID A, 10100] [OID B 00110]\} {OID Y, 100101, [OID C, 10110] [OID D 00110]}\}

• **ACC in CA → AA**
 - \{\{OID X, 101010, [OID A, 00110] [OID B 00110]\} {OID Y, 011010, [OID C, 10110] [OID D 00110]}\}

• **Clearance in AA → AC**
 - \{OID X, 011010, [OID A, 00110] [OID B 00110]\}
Example: Processing TA

• Initial permitted-clearances
 – \{\{\text{OID X, 111010, [OID A, 10110] [OID B 00110]}\}\}
 \{\text{OID Y, 111010, [OID C, 10110] [OID D 00110]}\}\}
 – Set the initial permitted-clearances value to the ACC in TA
Example: Processing TA \rightarrow CA

- permitted-clearances (Generic)
 - $\{\text{OID X, 110010, [OID B 00110]}\}$
 $\{\text{OID Y, 100000, [OID C, 10110] [OID D 00110]}\}$
 - Classification bits that are set (i.e., 1) in both the state variable (i.e., permitted-clearances) and in the ACC remain set
 - securityCategory A deleted due to lack of exact match in values
 - securityCategory B, C, D remain intact due to exact match

- permitted-clearances (Type OID Specific)
 - $\{\text{OID X, 110010, [OID A, 10100] [OID B 00110]}\}$
 $\{\text{OID Y, 100000, [OID C, 10110] [OID D 00110]}\}$
 - Classification bits that are set (i.e., 1) in both the state variable (i.e., permitted-clearances) and in the ACC remain set
 - securityCategory A bits that are set (i.e., 1) in both the state variable (i.e., permitted-clearances) and in the ACC remain set
 - securityCategory B, C, D remain intact due to exact match
Example: Processing CA → AA

- permitted-clearances (Generic)
 - \{OID X, 100010, [OID B 00110]\}
 - Classification bits that are set (i.e., 1) in both the state variable (i.e., permitted-clearances) and in the ACC remain set
 - Clearance Y deleted due to no classification bits being set
 - securityCategory B remains intact due to exact match

- permitted-clearances (Type OID Specific)
 - \{OID X, 100010, [OID A, 00100] [OID B 00110]\}
 - Classification bits that are set (i.e., 1) in both the state variable (i.e., permitted-clearances) and in the ACC remain set
 - Clearance Y deleted due to no classification bits being set
 - securityCategory A bits that are set (i.e., 1) in both the state variable (i.e., permitted-clearances) and in the ACC remain set
 - securityCategory B remains intact due to exact match
Example: Processing AA → AC

• effective-clearance (Generic)
 – Generic: \{OID X, 000010, [OID B 00110]\}
 – Classification bits that are set (i.e., 1) in both the state variable (i.e., permitted-clearances) and in the **clearance attribute** remain set
 – securityCategory B remains intact due to exact match

• effective-clearance (Type OID Specific)
 – \{OID X, 000010, [OID A, 00100] [OID B 00110]\}
 – Classification bits that are set (i.e., 1) in both the state variable (i.e., permitted-clearances) and in the **clearance attribute** remain set
 – securityCategory A bits that are set (i.e., 1) in both the state variable (i.e., permitted-clearances) and in the **clearance attribute** remain set
 – securityCategory B remains intact due to exact match
Questions