Securing RPSL Objects
with RPKI Signatures

draft-kisteleki-sidr-rpsl-sig-00.txt

Robert Kisteleki, IETF73, Minneapolis



RPSLSIG: Why?

Problems we’re looking at:

* Not all IRRs / IR databases have good enough
authentication for maintaining objects

— Some databases also function as mirrors

* Once an object is fetched from a database,
one cannot verify its authenticity

 Difficult to spot malicious modifications (or
typos) to these objects

Robert Kisteleki, IETF73, Minneapolis



RPSLSIG: signatures on RPSL objects

One potential use of RPKI certificates is to allow
signatures on such objects:

* Create electronic signatures over the contents of such
objects

* Prove that the legitimate holder of the contained
resources created/maintains the object

* Provide integrity protection for the object even if it
leaves its original database

* Provide “object security” in addition to existing channel
security

Robert Kisteleki, IETF73, Minneapolis



RPSLSIG: signatures on RPSL objects

Some properties of the RPSLSIG approach:
* |t's not specific to any RPSL object type

— General enough to cover route(6],
inet[6]num, aut-num, as-block, ...

e Allows multiple signatures

— Useful for route[6] objects, but not
restricted to those

* Possible to incrementally roll out

Robert Kisteleki, IETF73, Minneapolis



RPSLSIG: meaning of a sighature

By signing an RPSL object, the sigher of the
object expresses that:

* they have the right to use the resource that the
object refers to (ie. found as the primary key or in
some other field of the object);

* they are responsible for the contents of the object;
and

* they understand and agree with the contents of the
object, up to the extent of the signed parts.

Robert Kisteleki, IETF73, Minneapolis



RPSLSIG: what to sign

Simple “blob” signing does not work:

* Generally, the database can change some of the contents =>
signature fails

— CR/LF changes
— adding changed:, source: attributes
— Other “minor” changes can happen
* Signature has to fit in an RPSL-like structure
* The content needs to be signed, not the format

* Solution: selectively sign part of the content that carries real
operational content, does not change and/or define rules to
overcome minor changes.

Robert Kisteleki, IETF73, Minneapolis



RPSLSIG: RPSL-like objects

Look at the structure of an RPSL-like objects:

attributel: valuel
attribute2: value?2
attribute3: value3

* Looks like an SMTP header, null body.
 We were inspired by DKIM

Robert Kisteleki, IETF73, Minneapolis



RPSLSIG: Attribute selection

The signer is allowed to pick which attributes he
actually signs.

 We defined a minimum set for the main object types

— In order to avoid disagreements over what should have
been signed

* The signer can still choose to sign more attributes

* The list of signed attributes becomes part of the
signature

Robert Kisteleki, IETF73, Minneapolis



RPSLSIG: Normalization

Be aware of the database-inflicted changes, like:

* Representation of IPv6 addresses: always use the
long form over the short form.

* Representation of IPv4 prefixes: use X.X.X.X-y.y.y.y
notation or x.x.x/y

e Key-cert objects have their fingerprint, method and
owner lines auto-corrected if supplied incorrectly.

* “Changed” attribute is automatically corrected /
filled in.

Robert Kisteleki, IETF73, Minneapolis



RPSLSIG: C14n

Basic steps:

* Uppercase/lowercase conversion

 Drop comments (#blah)

* White space conversion

 Multi-line attribute conversion (to one line format)
* Keep attribute names in the lines.

e Standardize line endings

Robert Kisteleki, IETF73, Minneapolis



RPSLSIG: The signature itself

The signature itself could be:
 DKIM style

— fits the contents and structure very well
— user-readable for the most part
— simple
e CMS
— well defined ASN1 structure
— more difficult to do multiple signatures

— output have to be tweaked to RPSL-like structure anyway

We chose the DKIM style approach.

Robert Kisteleki, IETF73, Minneapolis



RPSLSIG: The signature itself

Where to put the signature?
* Existing “remarks:” attribute

— Backwards compatible
— Makes it difficult to sign other “remarks:” lines
— Still needs a special label to identify signature
* Clients need to be modified to understand/make use it

* New “signature:” attribute
— This is an extension
— The signature is a new attribute, should be expressed as such
— Compatibility with existing clients can still be guaranteed
* With switches and conscious default behavior of servers
— Clients need to be modified to understand/make use of it

Robert Kisteleki, IETF73, Minneapolis



RPSLSIG: an example

inetnum: 193.0.0.0 - 193.0.7.255

netname: RIPE-NCC

descr: RIPE Network Coordination Centre

descr: Amsterdam, Netherlands

remarks: Used for RIPE NCC infrastructure.

country: NL

admin-c: AMR68-RIPE

admin-c: BRD-RIPE

tech-c: OPS4-RIPE

status: ASSIGNED PI

mnt-by: RIPE-NCC-MNT

mnt-lower: RIPE-NCC-MNT

signature: v=1l; c=rsync://rpki.ripe.net/...cer; m=rsa-shal;
t=1234567890; a=inetnum+netname+country+status; b=<base64-data>

source: RIPE # Filtered

Robert Kisteleki, IETF73, Minneapolis



RPSLSIG: Signature fields

Defined fields:

e \ersion (v)

* Reference to signer’s certificate (c)

e Signature method (m)

e Signing time (t)

e Signed attributes (a)

* The signature itself (b)

* Optional: expiration time (x)

e Optional: reference to other signatures (o)

Robert Kisteleki, IETF73, Minneapolis



RPSLSIG: Signature creation steps

Given an RPSL object, in order to create the actual signature, the following steps are
needed:

* Potentially submit the object-to-be-signed to the destination database, and download the
resulting database-normalized object.

* Potentially create a one-off key pair and certificate to be used for signing this object this time.
Alternatively, one can reuse the same key pair / certificate for multiple signatures.

* Based on the object type, the minimum set and the local policies, create a list of attribute
names referring to the attributes that will be signed (contents of the "a" field).

* Arrange the selected attributes according to the selection sequence provided above, while
filtering out the non-signed attributes.

* Construct the would-be "signature" attribute, with all its fields leaving the "b" field empty
(NULL value).

* Apply normalization procedure to the selected attribute (including the "signature" attribute).
* Create the signature over the results of the previous step (hash and sign).

* Attach the base64 encoded value of the signature to the "b" field.

* Append the resulting final "signature" attribute to the original object.

Robert Kisteleki, IETF73, Minneapolis



RPSLSIG: Signature verification steps

In order to validate a signature over such an object, the following steps are necessary:

Check proper syntax of the "signature" attribute.

Fetch the certificate referred to in the "c" field of the "signature" attribute, and check its
validity using the steps described in [ID.sidr-res-certs].

Check whether the signature (base64 decoded value of the "b” field) is correct when verified
with the public key found in the certificate.

Extract the list of attributes that were signed by the signer from the "a" field of the
"signature" attribute”

Verify that the list of signed attributes contains the minimum set of attributes for that object
type.
Potentially check local policy whether the list of the signed attributes conforms to it.

Arrange the selected attributes according to the selection sequence provided above, while
filtering out the non-signed attributes.

Replace the value of the signature filed of the "signature” attribute with an empty string
(NULL value).

Apply normalization procedure to the selected attributes (including the "signature"
attribute).

Check whether the hash value of the so constructed input matches the one in the signature.
Robert Kisteleki, IETF73, Minneapolis



RPSLSIG: Open questions

Further work is needed still:

 Multiple signatures referring to each other - is
it useful enough?

* Character encoding issues? Unicode?

* Sync with others who are thinking along
similar lines.

Robert Kisteleki, IETF73, Minneapolis



Questions?

Robert Kisteleki, Jos Boumans

robert@ripe.net
jib@ripe.net

Robert Kisteleki, IETF73, Minneapolis



