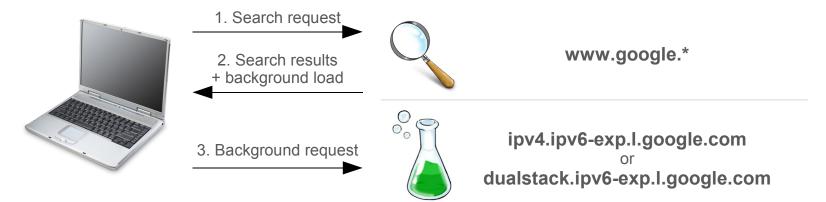


Google Global IPv6 statistics Measuring the current state of IPv6 for ordinary users

Steinar H. Gunderson Software Engineer



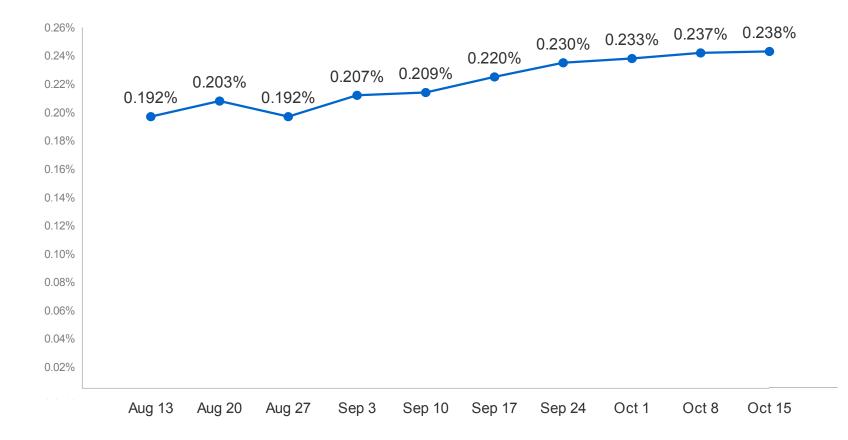
- There is too little data about IPv6 among clients
 - Existing measurements mostly on a small scale and/or only indirectly related to client IPv6 availability (e.g., IPv6 traffic percentage, IPv6-enabled ASNs)
 - Best existing number is probably 0.086% (Kevin Day, March 2008)
- General worry that turning on IPv6 can cause all sorts of brokenness
 - Tunnels that someone forgot
 - Suboptimal routing
 - Home routers doing evil things to AAAA queries
- We need to figure out how common IPv6 is among our users, how prevalent brokenness is, and how we can best serve our IPv6 users
 - Our question: What is the impact of adding an AAAA record to a web site?

3

Methodology

- Enroll a small fraction of ordinary Google users into an "IPv6 experiment", where their browser is asked to perform a background request
 - Involves users from all datacenters equally, but background request goes to one of two datacenters (one in the US, one in Europe)
 - Cryptographically signed to avoid easy injection of false data

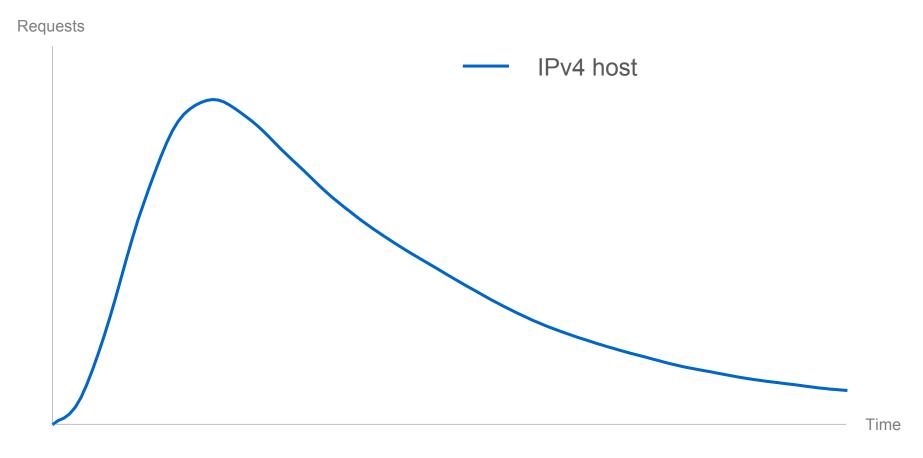
- Recorded information:
 - IPv4 and IPv6 addresses, as applicable
 - Image request latency
 - Browser/OS details (User-Agent string)

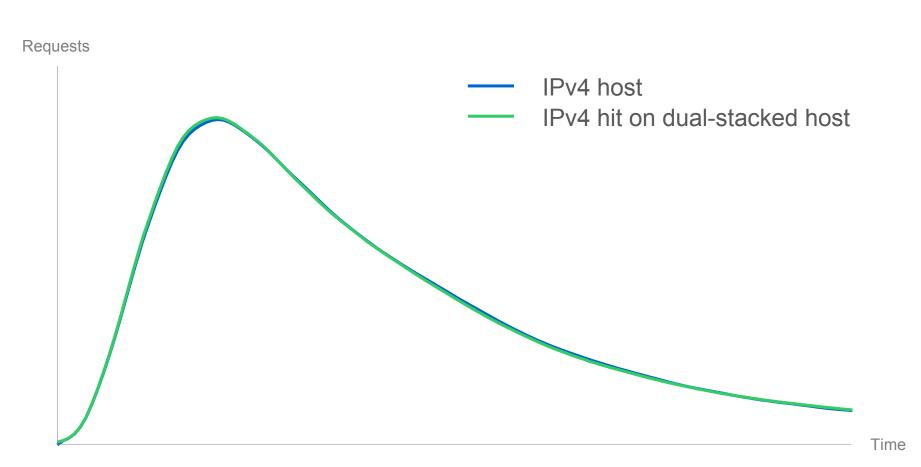

Key figures

Overview of connectivity and latency data

Connectivity

- 0.238% of users have useful IPv6 connectivity (and prefer IPv6)
- **0.09%** of users have *broken* IPv6 connectivity
 - That is, adding an AAAA record will make these users unable to view your site
 - Due to statistical issues, this is a much less accurate figure (could easily be 0.06% or 0.12%), so take it with a grain of salt
- Probably at least a million distinct IPv6 hosts out there
 - Again, a number with statistical caveats

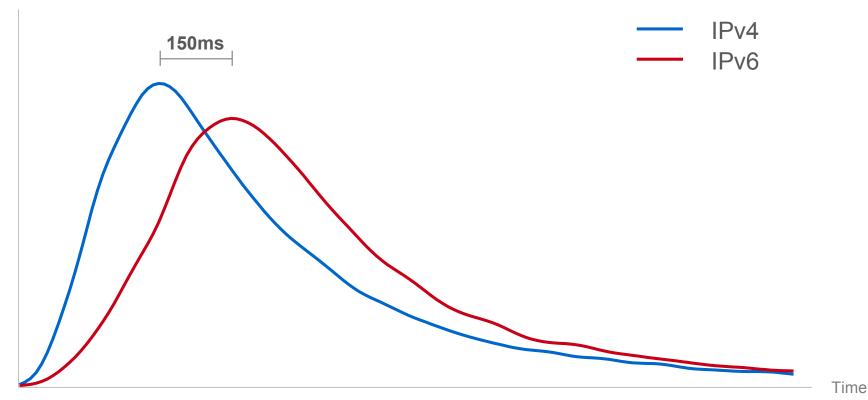

Connectivity development over time



Google

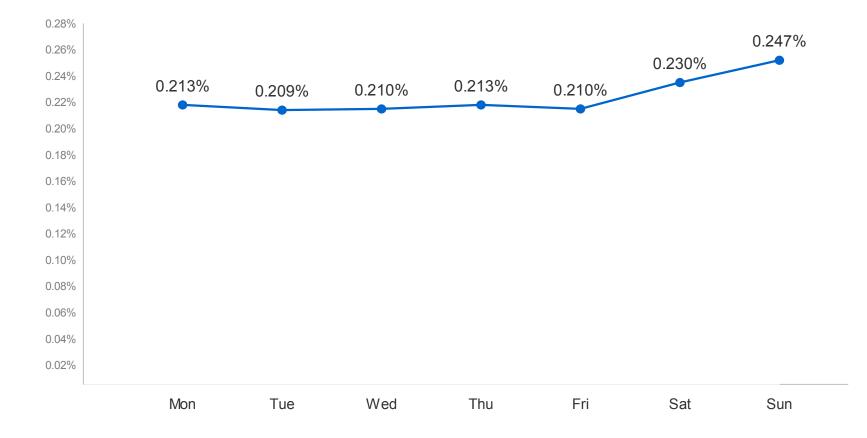
Latency distribution function, clients visiting ipv4.ipv6-exp.l.google.com

Note: This graph is *not* indicative of ordinary Google service latency



- We cannot directly graph IPv4 vs. IPv6 latency
 - IPv6-enabled hosts are likely to have faster network connectivity overall (universities, power users, etc.)
 - Need a way to remove inherent bias
- Solution: Find pairs of hits from the same /24 IPv4 network, discard all other data
 - Gives comparable (paired) data sets
- This means we are measuring relative latency for a *different set* of users, but the data is still indicative of what you can expect today

Relative IPv4/IPv6 latency (paired data)

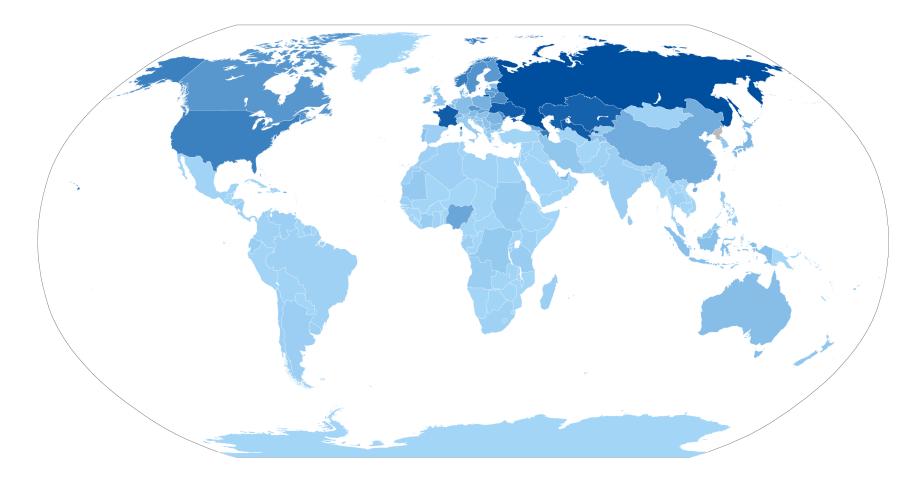


Data breakdowns

Drilling in to get a more detailed look

Connectivity by weekday (UTC)

Connectivity by country



- Based on the IPv4 address, geolocate the user, then group by country
 - Some countries with relatively little Internet traffic removed

Country	IPv6 penetration		
Russia	0.76%		
France	0.65%		
Ukraine	0.64%		
Norway	0.49%		
United States	0.45%		
China	0.24%		
Japan	0.15%		

Connectivity by country

Method of IPv6 connectivity

- Based on the IPv6 address, we can infer how the user gets IPv6 access
 - Unfortunately, no good way of distinguishing native from tunnels based on the address alone
 - Vista with Teredo prefers IPv4 by default, so probably undercounted

Method	Global usage	
6to4	67.9%	
Native/other	29.1%	
ISATAP	1.6%	
Teredo	1.4%	

- Some countries stand out
 - United States, Canada: 95% 6to4
 - France: 95% native (almost all free.fr)
 - China: 71% native, 25% ISATAP

IPv6 penetration and connectivity type by operating system Ranked by overall IPv6 penetration

Operating system	IPv6 penetration	Native/other proportion	6to4 proportion	Teredo/ISATAP proportion
Mac OS	2.44%	9%	91%	0%
Linux	0.93%	86%	13%	1%
Windows Vista	0.32%	55%	43%	2%
Windows Server 2003	0.07%	_	_	_
Windows XP	0.03%	50%	30%	20%
Windows 2000	<0.01%	_	_	_

97% of all Teredo users are on Windows (even undercounting Vista)

Summary

Brief analysis and conclusions

- IPv6 prevalence is still low, but growing by the week
 - Large (and sometimes surprising) variations among individual countries
 - Still heavily influenced by single deployments (e.g., free.fr)
- It's not that broken
 - ~0.09% clients lost, ~150ms extra latency don't believe the FUD
- The default policy matters a lot
 - Vista: 10x IPv6 prevalence over XP (OS defaults to enabling IPv6)
 - Mac OS: 8x IPv6 prevalence over Vista (Airport Extreme with 6to4 as default)
- 6to4 is by far the most common transition mechanism (at least when you don't count Vista's not-preferred-by-default Teredo)
 - Probably in part due to the AirPort Extreme
 - Consider running your own 6to4 relay for return packets

- Keep it running
 - Gather more data as time goes by
- Figure out why we lose users on the way
 - So we can fix it
- Run different experiments to get more accurate loss numbers
 - Paired data (i.e., two separate background requests) has been done before and is a possibility, but does not solve all problems
 - More client-side logic would help

Questions?