Rapid Synch for RTP Multicast Sessions

draft-versteeg-avt-rapid-synchronization-for-rtp-02

IETF 74 – March 2009

Bill Ver Steeg, Ali C. Begen, Tom Van Caenegem and Zeev Vax

{billvs, abegen}@cisco.com, Tom.Van_Caenegem@alcatel-lucent.be, zeevvax@microsoft.com
Recap: Proposed Approach

- Prior to join, receiver requests a unicast burst from a server caching the recent data.

Data the RTP receiver needs to get from the retransmission server
Summary

• RTP receiver says to the retransmission server:
 “I have no synch with the stream. Send me a repair burst that will get me on the track with the multicast session”

• Differences compared to conventional retransmission:
 – Receiver does not know exactly what it is missing
 – Retransmission server
 • May need to parse data from earlier in the stream than it is needed for retransmission (Reference information may be dispersed)
 • May need to burst faster than real time

• We define a method that enables a joining receiver to acquire and process a multicast flow quickly

• The method is applicable to any RTP-encapsulated multicast flow
Changes since Version -01

• Two drafts have been combined together:
 – draft-versteeg-avt-rapid-synchronization-for-rtp-01
 – draft-levin-avt-rtcp-burst-00

• A new section on protocol design considerations has been added

• The draft is no more MPEG2-TS specific

• The video-specific discussions have been moved to:
 – draft-begen-avt-rtp-mpeg2ts-preamble-00

• The RMS-R, RMS-I and RMS-T messages have been modified

• The discussion of RTCP XR report has been moved to:
 – draft-begen-avt-rapid-sync-rtcp-xr-00
Rapid Synchronization

Open Issue:

Any need to explicitly address other topologies where FT, Burst and Retransmission Sources are not co-located?

The Feedback:

Such topologies are for further study
Rapid Synchronization

Multicast Source | Retransmission Server | Router | RTP Receiver

-- RTP Multicast --
-- RTP Multicast ->

<"""""""""""" RTCP RMS-R "'
'' (RTCP RMS-I) """"""""'>
.. Unicast RTP Burst>
'' (RTCP RMS-I) """"""""

<~~ IGMP Join ~~

-- RTP Multicast --

<"""""""""""" RTCP RMS-T "'
<"""""""""" (RTCP NACK)''
.. (Unicast Retransmissions)>
<"""""""""" RTCP BYE "'

Ali C. Begen (abegen@cisco.com)
RMS Request (RR ➔ RS)
(Payload-Independent) Transport-Layer Feedback (PT=RTPFB, FMT=5)

- Sending one RMS-R is required prior to RMS
 - Min RMS Buffer Fill Req: RR’s min data req (in ms) from the burst
 - A zero value means it is not specified
 - Max RMS Buffer Fill Req: Max data (in ms) RR can accept from the burst
 - A zero value means it is not specified
 - Max Receive Bitrate: Maximum bitrate (in bps) that RR can receive
 - A zero value means it is not specified
RMS Information (RS \rightarrow RR)
(Payload-Independent) Transport-Layer Feedback (PT=RTPFB, FMT=6)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

- Extended RTP Seqnum of the First Burst Packet
- Earliest IGMP Join Time
- Rapid Synchronization Duration
- Max Burst Bitrate

• Sending one RMS-I is required before or during the burst
 – Response may indicate whether RMS request has been accepted or not
 – Response may be used to signal RR to join immediately or at an indicated time

• Further RMS-I messages may be sent to update any information
 – MSN indicates message seqnum (useful to identify reordered messages)
RMS Termination (RR → RS)
(Payload-Independent) Transport-Layer Feedback (PT=RTPFB, FMT=7)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 1 2 3</td>
<td>4 5 6 7</td>
<td>8 9 0 1</td>
<td>2 3 4 5</td>
</tr>
<tr>
<td></td>
<td>++++++++</td>
<td>++++++++</td>
<td>++++++++</td>
<td>++++++++</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Although RS may end the burst proactively, sending RMS-T at least once is required
- If RR has not joined the multicast session or has not started receiving multicast packets
 - RR sends an empty RMS-T message (w/o an RTP seqnum)
 - RS must stop the burst upon receipt
- If RR has started receiving multicast packets
 - RR sends an RMS-T message with the RTP seqnum of the first multicast packet
 - RS should continue bursting until the reported seqnum
- RS may continue bursting if RMS-T message gets lost
 - RMS-T messages may be repeated (by following the rules of RFC 4585)
 - RS should eventually end the burst at some point (e.g., after a timeout)
- If RR needs to cancel an active/pending unicast session, RR sends a BYE
TLV Encoding in Control Plane

- Almost all fields in RMS control messages are optional
 - Not every implementation needs every field
 - An implementation may not need every field all the time
- Then, why not make every field TLV encoded?
 - Unused fields will not be encoded
 - Saves bandwidth
 - Eliminates the need for special values and ambiguity
Extensions for Control Plane

• New TLV elements may be defined later
 – These extend the protocol in a vendor-neutral manner
 – These should be accompanied by informational RFCs

• Vendors may need vendor-specific extensions
 – For interoperability, such extensions MUST NOT collide
 – Use numbers from http://www.iana.org/assignments/enterprise-numbers

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

(TLV-encoded) Fields as Defined in This Document:

- Type = TBD
- Length
- Ent. Number
- Ent. Number contd.
- Value
- Value contd.
Known Implementations

• Open Source RTP Receiver Implementation by Cisco

 Documentation:
 http://www.cisco.com/en/US/docs/video/cds/cda/vqe/3_0/user/guide/ch1_over.html

 FTP Access:
 ftp://ftpeng.cisco.com/ftp/vqec/

 Preliminary Results:
 See the references

• IPTV Commercial Implementation by Microsoft

 Information:
 http://www.microsoft.com/mediaroom
 http://informitv.com/articles/2008/10/13/channelchangetimes/
Other Open Issues

• Name confusion with draft-perkins-avt-rapid-rtp-sync
 – We propose to update our title as:
 Unicast-Based Rapid Acquisition of Multicast RTP Sessions
 – Any other proposals?

• Collision in FMT numbering space

• Using extended RTP seqnums in RMS-I and RMS-T

• Discussion of burst shaping, NAT and security issues
Next Steps

• Shall we add a milestone to AVT's charter to produce an RFC on rapid acquisition of multicast RTP sessions?

• Breakout Session:
 – Tomorrow at 9am (till 10:30am)
 – Room: Yosemite A
 – Bridge: See AVT mailing list