About CELT...

- There are two main classes of audio codecs
 - Speech codecs with low to medium quality and low delay
 - Music codecs with high quality and high delay
- CELT aims for both high quality and very low delay
 - Prevents collisions during conversations (higher sense of presence)
 - Reduces or remove the need for acoustic echo cancellation
 - Allows synchronization for live music performance
- Perceptual transform (MDCT) codec
- Developed within the Xiph.Org Foundation
- Reference implementation is open source (BSD-licensed)
- No royalties, avoids known patents in the field
CELT characteristics

- Sampling rates from 32 kHz to 96 kHz
- Total algorithmic delay from 2 ms to 24 ms (8 ms typical)
- Frame sizes from 64 samples to 512 samples
- One or two channels of audio encoded into a single frame
- Error and Loss robustness
 - Monotonically decreasing 'bit importance'
- Signaling-free on-the-fly rate adjustment
- Bit-stream "not frozen yet"
Audio codec landscape

Bitrate (kbps/channel) vs. Delay (ms)

- AAC, MP3, Vorbis
- AMR-WB+
- G.723.1C
- G.722.1C
- AMR-WB
- AAC-LD
- CELT
- G.729
- G.722

Legend:
- narrowband
- wideband
- > wideband

Graph showing:
- Speech (48)
- Music (64)
Codec behavior impacting the draft

• The decoder **MUST** know
 – The sample rate the sender is using
 – The codec frame size the sender is using
 – The length of each compressed codec frame
 – If the encoded frame codes for one or two channels

• Of these only the compressed length should reasonably change frame to frame

• Sample rate, frame size changes require somewhat computationally expensive setup
Frame size

- Power of two sizes give the best performance
 - Embedded implementations may only support some sizes
 - Single frame size concurrently
- External factors often drive frame size preferences
- Current draft negotiates using fmp and requires the answerer will respond with a single supported size and presumes it will send with that rate
 - This has early media issues
Channel mapping

• Indicates the grouping of audio channels into CELT frames and how the channels are used
• Not all receivers will support multi-channel reception
• Common use cases would have asymmetric configurations
 – Stereo down to conference bridge clients, mono up
• Current draft is simply broken in this regard
 – SDP signals a 'mapping' parameter
 – If its used like a 'sprop' there is no way to indicate receiver capability
 – Change to having separate capability and sender mode attributes
 • Early media problems
Compressed length

- CELT can output any requested number of bytes
- Support for multiple CELT frames per packet requires signaling the distribution of bytes to frames
- Signaled in-band
- CELT compressed lengths at the start of each RTP
 - Most common case is short lengths
 - Lengths under 255 bytes use a single byte
 - Longer lengths encode a 0xFF for each 255 bytes of payload then another byte with the remaining length.
- No issues with this approach?
- Is the low overhead in the draft mode worthwhile?
Common SDP attributes

• ptime
 – Profile treats this as a receiver requested minimum packetization interval only

• b=AS:
 – Profile treats this as a receiver requested maximum bitrate

• These are the simple, conventional uses, no codec interaction

• No issues here?

• Some implementers appear to have incorrect beliefs about ptime
Open issues

• Early media issues with current negotiation approach
 – The offerer could use distinct payload types with single configurations
 – How acceptable is it to burn payload types for this?
 – Also send in-band?
 • Could be done without continual overhead
• Re-invite not addressed
 – Obvious solution is to recommend different payload types be used when sender parameters change
Future work

• CELT would be more flexible with configuration data (~100 bytes)
 – Expected all receivers would support all configuration data
 – Configuration packet transmitted at regular interval?
 – Incrementally transmitted in-band?
 – Base64-encoded in SDP parameters?
• Freezing the CELT bit-stream