New GS2 Design

 Lighter weight design achieved by:

* Dropping sec layers (no nego of layers and
maxbuf)

* Replacing original GS2 channel binding (CB)
semantics

- Before: CB success/failure affected sec layer
negotiation

- Now: CB is still negotiable, but all-or-nothing
when used

* Pretty mechnames (not derived from OIDs)

* unless the mech didn't have a pretty mechname
from the get-go



New GS2: Headers

 GS2 now consists of two simple headers:
* one prefixed to the first client - server message
* one prefixed to the application's CB data

1% client message header:

* A one-byte (or bit) constant

* A one byte (or two bit) flag for CB
 SASL authzid

e CB header:

e Same as 1* client message header!



New GS2: Headers

* The constant flag Is for compression of the
GSS-API initial context token pseudo-ASN.1/

DER mech OID header (see RFC2743,
section 3.1)

 The channel binding flag Is for CB negotiation
and downgrade detection (see later slides)

 The authzid Is needed because GSS-AP
mechs don't have an equivalent

* (All other SCRAM message components other
than authzid and CB flags stay in SCRAM)



New GS2 Design: Headers

« The RFC2743 header compression flag is an
ASCII 'T' or 'F' and is always 'T' for SCRAM

 'T" - mech is “standard” mech per-RFC2743

 The CB flag iIs an ASCII 'n' (client can't), 'y’
(client could but didn't) or 'p' (“present”, i.e.,

channel binding was used)
e The authzid Is: “a=" saslhame

 Trivial ABN




New GS2: Mechnames

« SCRAM will have two mech names:

« SCRAM-SHA-1-PLUS
« SCRAM-SHA-1

 The “-PLUS” suffix comes from GS2 and is for
downgrade detection (see next slide)

* Pretty mechnames; GSS SASL_mechname()
function added for looking up a GSS-API
mech's SASL mechname

 New mechs should specify/register a pretty
SASL mechname or they will get a OID-
derived name



New GS2: Downgrade detection

 CB needs to be negotiable
* Use two mechnames (see previous slide)

* Need to securely deal with: client app & SASL/
TLS stack supports CB but server doesn't

« Remember: SCRAM has no sec layers

* listing the server's SASL mechs after
authentication cannot protect the negotiation



New GS2: Downgrade detection

e Server advertises SCRAM-SHA-1 or both,
SCRAM-SHA-1 and SCRAM-SHA-1-PLUS

 Only SCRAM-SHA-1 if the server can't do CB
 Both if it can

» Client picks one and sets the GS2 CB flag:

* 'n'if client can't do CB, 'y' if it could but the
server only advertised SCRAM-SHA-1, 'p' if
the client used CB regardless of what was
advertised

- If client sees only SCRAM-SHA-1 it will not do CB



New GS2: Downgrade detection

e |f client uses CB and the server can't:
authentication fails, obviously

e |f client couldn't use CB: authentication
succeeds IFF the server couldn't either

e |If client could have used CB but didn't, and the
server did support CB: authentication fails
because of downgrade attack



New GS2: Authenticated plaintext

 GS2 adds a header to the client's first
message. This needs to be authenticated.

 GS2 header Is authenticated by always using
the GSS-API channel binding facility, with
any actual CB data prefixed with the GS2
header.

* Only GSS-API mechanisms that support
channel binding need apply

* krb5 does, SCRAM does, PKU2U will (but
PKU2U iIs not needed — TLS with user certs
will suffice)



New GS2: Analysis

 The RFC2743 header compression flag Is
constant in SCRAM case

* CB negotiation is needed no matter what

* Apure SASL SCRAM could do CB nego in the
mech instead of via mech nego

 The authzid i1s needed whether GS2 Is used or
not (GS2 “lifts” authzid out of pure SASL
SCRAM)

e Conclusion: GS2 is now as simple as it gets



New GS2: SASL APl impact

e SASL APIs will need:

» “Can do CB” input
» Actual CB data input

 This would be the case with or without GS2

» Also useful: “server SASL mech list” input on
client side



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

