

New GS2 Design

● Lighter weight design achieved by:
● Dropping sec layers (no nego of layers and

maxbuf)
● Replacing original GS2 channel binding (CB)

semantics
– Before: CB success/failure affected sec layer

negotiation
– Now: CB is still negotiable, but all-or-nothing

when used

● Pretty mechnames (not derived from OIDs)
● unless the mech didn't have a pretty mechname

from the get-go

New GS2: Headers

● GS2 now consists of two simple headers:
● one prefixed to the first client→server message
● one prefixed to the application's CB data

● 1st client message header:
● A one-byte (or bit) constant
● A one byte (or two bit) flag for CB
● SASL authzid

● CB header:
● Same as 1st client message header!

New GS2: Headers

● The constant flag is for compression of the
GSS-API initial context token pseudo-ASN.1/
DER mech OID header (see RFC2743,
section 3.1)

● The channel binding flag is for CB negotiation
and downgrade detection (see later slides)

● The authzid is needed because GSS-API
mechs don't have an equivalent

● (All other SCRAM message components other
than authzid and CB flags stay in SCRAM)

New GS2 Design: Headers

● The RFC2743 header compression flag is an
ASCII 'T' or 'F' and is always 'T' for SCRAM

● 'T' → mech is “standard” mech per-RFC2743

● The CB flag is an ASCII 'n' (client can't), 'y'
(client could but didn't) or 'p' (“present”, i.e.,
channel binding was used)

● The authzid is: “a=” saslname “,”
● Trivial ABNF

New GS2: Mechnames

● SCRAM will have two mech names:
● SCRAM-SHA-1-PLUS
● SCRAM-SHA-1

● The “-PLUS” suffix comes from GS2 and is for
downgrade detection (see next slide)

● Pretty mechnames; GSS_SASL_mechname()
function added for looking up a GSS-API
mech's SASL mechname

● New mechs should specify/register a pretty
SASL mechname or they will get a OID-
derived name

New GS2: Downgrade detection

● CB needs to be negotiable
● Use two mechnames (see previous slide)

● Need to securely deal with: client app & SASL/
TLS stack supports CB but server doesn't

● Remember: SCRAM has no sec layers
● listing the server's SASL mechs after

authentication cannot protect the negotiation

●

New GS2: Downgrade detection

● Server advertises SCRAM-SHA-1 or both,
SCRAM-SHA-1 and SCRAM-SHA-1-PLUS

● Only SCRAM-SHA-1 if the server can't do CB
● Both if it can

● Client picks one and sets the GS2 CB flag:
● 'n' if client can't do CB, 'y' if it could but the

server only advertised SCRAM-SHA-1, 'p' if
the client used CB regardless of what was
advertised

– If client sees only SCRAM-SHA-1 it will not do CB

New GS2: Downgrade detection

● If client uses CB and the server can't:
authentication fails, obviously

● If client couldn't use CB: authentication
succeeds IFF the server couldn't either

● If client could have used CB but didn't, and the
server did support CB: authentication fails
because of downgrade attack

New GS2: Authenticated plaintext

● GS2 adds a header to the client's first
message. This needs to be authenticated.

● GS2 header is authenticated by always using
the GSS-API channel binding facility, with
any actual CB data prefixed with the GS2
header.

● Only GSS-API mechanisms that support
channel binding need apply

● krb5 does, SCRAM does, PKU2U will (but
PKU2U is not needed – TLS with user certs
will suffice)

New GS2: Analysis

● The RFC2743 header compression flag is
constant in SCRAM case

● CB negotiation is needed no matter what
● A pure SASL SCRAM could do CB nego in the

mech instead of via mech nego

● The authzid is needed whether GS2 is used or
not (GS2 “lifts” authzid out of pure SASL
SCRAM)

● Conclusion: GS2 is now as simple as it gets

New GS2: SASL API impact

● SASL APIs will need:
● “Can do CB” input
● Actual CB data input

● This would be the case with or without GS2
● Also useful: “server SASL mech list” input on

client side

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

