
IP Fast Reroute Using Tunnel-AT
draft-xu-ipfrr-tunnelat-00

Mingwei Xu, Lingtao Pan, Qing Li

Tsinghua University, China

75th IETF Meeting, Stockholm
July 2009

Background

  What is IPFRR
  When a link or node failure occurs in an IP

network, there is a period of disruption to the
delivery of traffic until the network re-converges on
a new topology.

  IP fast reroute (IPFRR) mechanisms are
methods used in pure IP networks to provide
protection from such disruptions.

Background – Main stream mechanisms

  LFA: (in RFC 5286).
  Send packet to an alternate neighbor.
  Simple, but can not provide 100% protection

coverage.

Background – Main stream mechanisms

  NotVia: (in ietf-rtgwg-ipfrr-notvia-addresses)
  100% single node protection coverage
  But, has to maintain extra NotVia addresses, high

management burden
  Has to reroute packet to next next hop, unnecessary back

tracing (see example below)

Background – Main stream mechanisms

  Tunnel: (in ietf-bryant-ipfrr-tunnels)
  Repairing source node S chooses a tunnel end

node T that can forward packets to destination D
bypassing failed neighbor F.

  But
  The original draft does not describe an efficient

algorithm to find tunnel end points.
  Failed to provide 100% single node failure protection

Background – More on Tunnel
  Why tunnel can’t provide 100% single node failure

protection coverage.
  Node n can’t be used as tunnel end point for s to reach h

since the cost of link n-h is high.
  Directed forwarding can be used to solve it. (Tell n to

forward packet to h directly)
  But even with directly forwarding, node i can’t be

reached by s.

1

1

1

1

Background -- Reprotection

  But actually s can send packets with
destination i to n, and telling n to directly
forward them to h. Since h also notices the
failure of f, it will reroute packets to i.

  We call this reprotection.

Tunnel-AT

  Our mechanism Tunnel-AT is an improved
Tunnel.
  By exploring reprotection, we achieve 100%

protection for single node failure on a bi-
connected topology.

  Inspired by iSPF, we propose an efficient
algorithm to find tunnel end points.

  The length of the backup paths computed under
Tunnel-AT are always exactly or very close to the
length of the shortest working path to the
destination.

Our Muse -- iSPF

0

1

7

8

13

2 3

4 5 6

9

10
11

12

0

1

7

8

13

2 3

4 5 6

9

10
11

12

  The iSPF works by reattach subtrees back:

Some definitions
  Detaching trees: Subtrees

of the original shortest path
tree of S rooted at one of
F's neighbor other than S.

  Affected nodes: nodes of
detaching trees.

  Attaching trees: maximal
common subtrees of the
original and new shortest
path tree formed by affected
nodes. Or the subtrees
reattached in the process of
iSPF.

Incoming nodes
  We call affected nodes whose parents are

not affected nodes incoming nodes. (node 4
and 11)

Tunnel-AT algorithm

  Step 1: Record the corresponding incoming node of
each affected nodes during the process of iSPF.

  Step 2: For each affected destination d, determine
the mark needed to reroute packets to d’s incoming
node.
  Stage 1: Let P be the incoming node’s parent. Decide if we

should encapsulate packets with P’s header (For example,
if P is S’s neighbor, new header is not needed.)

  Stage 2: Determine if Directed Forwarding is needed to
ensure P send packets to the incoming node.

Complexity Analysis

  Based on the original shortest path tree T
calculated by the normal link state routing
protocol, every node has to perform k times
incremental shortest path tree (iSPT) (k is
the number of neighbors) to construct
backup routes for all destinations.

  Theoretically, k * iSPT < One Full SPT

Evaluation

  Dataset
  6 ASes from Rocketfuel topology database.
  Extract bi-connected component.

  100% Protection coverage:

Evaluation

  Almost optimal path length:

Evaluation

  Complexity is less than one full SPT

Thanks

Some Properties

  Property 1: If destination d1 is the parent of d2 in the
same ATTree, d2 can be protected in the same way
as d1.

  Property 2: If destination d1 is the parent of d2, d1
and d2 are not in the same ATTree, but they are in
the same detaching tree, then d2 can be protected
in the same way as d1.

  Property 3: If destination d1 is the parent of d2, d1
and d2 are not in the same detaching tree, then d2
can be protected in the same way as d1 if
reprotection is used.

  In summary, a destination can be protected in the
same way as its parent.

