Make TCP more Robust to Long Connectivity Disruptions

Alexander Zimmermann and Arnd Hannemann

Department of Computer Science, Informatik 4
RWTH Aachen University, Ahornstr. 55, 52074 Aachen, Germany

75th IETF TCPM Meeting - Stockholm, Sweden
July 26, 2009
Changes from previous draft version
draft-zimmermann-tcp-lcd-00

- Miscellaneous editorial changes in Section 1, 2 and 3
- Section 2: Updated motivation for the algorithm
 ➞ Congestion versus Non-Congestion Events/Loss
 ➞ In-line with RFC “Improving the Robustness of TCP to Non-Congestion Events” [RFC4653]
- Section 4.1: Add basic idea of the algorithm
- Section 4.2: Update algorithm (suggestions Tim Shepard)
 ➢ Special case of the first received ICMP destination unreachable after an RTO could be removed
 ➢ “Backoff_cnt” variable was introduced so it is no longer possible to perform more reverts than backoff
- Section 4.3: Expanded according to the algorithm changes
Problem of Long Connectivity Disruptions (1/2)

Observation

- Disruptions in e2e path connectivity which last longer than one RTO cause suboptimal TCP performance

Problem statement

- TCP interprets segment loss as a sign of congestion
 ⇒ Means to detect loss: DUPACKs and RTO
- RTO case: (repeated) backoff(s) of the retransmission timer
- Deferred detection of connection re-establishment since TCP has to wait until next RTO before retransmit again
Problem of Long Connectivity Disruptions (2/2)

![Graph showing TCP behavior during long connectivity disruptions]

Advertised Window

<table>
<thead>
<tr>
<th>Sequence Offset [b]</th>
<th>Relative Time [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.000</td>
</tr>
<tr>
<td>100000</td>
<td>0.000</td>
</tr>
<tr>
<td>200000</td>
<td>0.000</td>
</tr>
<tr>
<td>300000</td>
<td>0.000</td>
</tr>
<tr>
<td>400000</td>
<td>0.000</td>
</tr>
<tr>
<td>500000</td>
<td>0.000</td>
</tr>
<tr>
<td>600000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

- **Advertised Window**
- **Cumulative ACK**
- **Sent Segments**
- **Retransmitted Segment**
- **ICMP Destination Unreachable**

Alexander Zimmermann and Arnd Hannemann
RWTH Aachen University
draft-zimmermann-tcp-lcd-01.txt
Solution for Long Connectivity Disruptions

Disruption Indication

▷ Disambiguate true congestion loss from non-congestion loss caused by long connectivity disruptions
▷ Exploit standard ICMP destination unreachable messages during timeout-based loss recovery

Disruption Reaction

▷ *Connectivity disruption loss*: undoing one RTO backoff if an ICMP unreachable message reports on a lost retransmission
 ⇒ Enables prompt detection when connectivity is restored
▷ *Congestion loss*: Retaining std. timeout-based loss recovery

⇒ Sender-only modification
Connectivity Disruption Indication

Queue of the router experiencing the link outage is

▶ *Deep enough*: buffers all incoming packets
 ⇒ Cause only variation in delay
 ⇒ Eifel [RFC3522], F-RTO [RFC4138]

▶ *Not deep enough*: drops packets; discards according route
 ⇒ TCP sender is notified about the dropped packets via
 ICMP destination unreachable messages [RFC1812]

Idea

▶ Interpret ICMP unreachable messages of code
 0 (net unreachable) or code 1 (host unreachable)
 as long connectivity disruption indication
ICMP messages as Connectivity Disruptions Indication

Issues

▶ Do not ignore congestion indication from the network
▶ ICMP messages do not necessarily operate on the same timescale as the packets eliciting them [RFC1812]
▶ ICMP messages are subject to rate limiting [RFC1812]

Useful

▶ ICMP unreachable messages contain the IP header of the datagram eliciting the ICMP messages plus the first 64 bit of the payload [RFC0791]
⇒ Allows to identify which segment of the respective connection triggered the ICMP unreachable message
Connectivity Disruption Reaction

Goal

▶ Prompt detection of the end of the connectivity disruption
▶ Retaining appropriate behavior in case of congestion

Basic Idea

▶ Increase the TCP’s retransmission frequency by undoing one RTO backoff if ICMP message reports on a presumably lost retransmission
▶ If either the (re-)transmission itself, or the corresponding ICMP message is dropped the backoff is performed
The Algorithm (1/2)

State: retransmission timer is expired

1. Initialize backoff counter:
 ▶ Backoff_cnt := 0

2. Placeholder for standard TCP timeout-based loss recovery
 ▶ In particular RFC 2988 steps (5.4) – (5.6) go here

3. If RTO was backed off in step 2, then:
 ▶ Backoff_cnt := Backoff_cnt + 1

4. Wait either for
 ▶ RTO, then Goto 2
 ▶ ACK, then Goto 9
 ▶ ICMP unreachable, then Goto 5

5. If Backoff_cnt ≥ 0, i.e., if an undoing of the last RTO backoff is allowed, then Goto 6, else Goto 4
The Algorithm (2/2)

6. Extract TCP segment included in ICMP unreachable:
 ▶ SEG := Extract(ICMP_DU)

7. If SEGSEQ == SND.UNA, i.e., ICMP_DU reports on the oldest outstanding segment, undo last RTO backoff:
 ▶ RTO := RTO/2
 ▶ Backoff_cnt := Backoff_cnt – 1

8. If the RTO expires due to undoing in step 7, then Goto 2, else Goto 4

9. Placeholder for standard TCP behavior when an ACK has arrived; no further processing
Methodology

Code

- Algorithm is implemented in Linux 2.6.28.7
- Publicly available: http://www.umic-mesh.net/downloads

Setup

- Wireless mesh network with 51 nodes
- Routing protocol: OLSR [RFC3626]; standard parameter
- Path length: 2 to 4 hops
- Two parallel flows: standard and patched
- 60s bulk TCP transfer; 500 measurements
Evaluación (1/3)

Alexander Zimmermann and Arnd Hannemann
RWTH Aachen University
draft-zimmermann-tcp-lcd-01.txt
Features

We . . .

▶ React only on ICMP unreachable messages during timeout-based loss recovery that reporting on SND.UNA
▶ Fall back to usual backoff in case there is congestion along the path after connectivity is restored
▶ Modify only the sender ⇒ Easy to implement

We do not . . .

▶ Alter TCP’s behavior in case of
 ▶ slow-start, steady-state or fast recovery
 ▶ timeout-based loss recovery with $\text{CWND} > 1$
 ▶ no receiving ICMP unreachable messages
▶ Probe for route repair faster than slowest TCP can send
Special cases

Retransmission ambiguity problem

» No problem since the assumption that the ICMP message provides evidence that one link loss was wrongly considered as congestion loss is still true

Wrapped sequence numbers

» Late ICMP unreachable message reporting on an old error may coincidentally fit as input

» Possibility is minuscule, since ICMP message must contain the exact sequence number of SND. UNA, while at the same TCP is in timeout-based loss recovery
Next steps

Any interest from the WG?