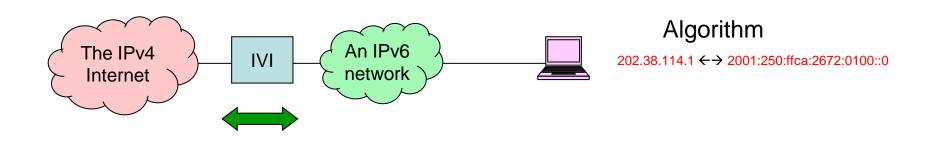
Stateless 1:N IVI and Stateless 1:N double IVI

X. Li, C. Bao, H. Zhang November 12, 2009

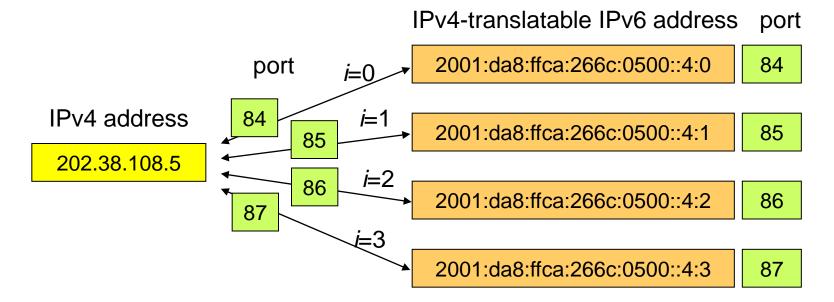

Outline

- Introduction
- Stateless 1:N IVI
 - Design concept
 - Address mapping algorithm
 - Extended address format
- Stateless 1:N double IVI
 - Port mapping algorithm
- Comparisons
- Summary

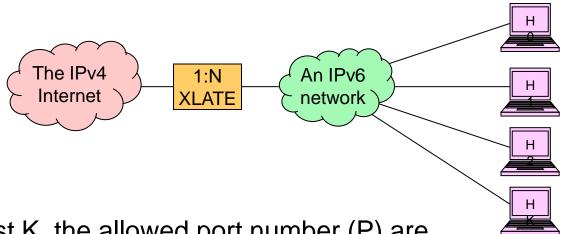
Introduction

- Stateless 1:1 IVI
 - Cannot use IPv4 address effectively
 - Support both IPv6 initiated and IPv4 initiated communications
- Stateless 1:N IVI
 - Can share the IPv4 addresses among IPv6 hosts
 - Support both IPv6 initiated and IPv4 initiated communications
- Stateless 1:N dIVI
 - Can share the IPv4 addresses among IPv6 hosts
 - Support both IPv6 initiated and IPv4 initiated communications
 - Do not need ALG

Stateless 1:1 IVI


Scenario 1 "an IPv6 network to the IPv4 Internet" Scenario 2 "the IPv4 Internet to an IPv6 network" Scenario 5 "an IPv6 network to an IPv4network" Scenario 6 "an IPv4 network to an IPv6 network"

Stateless 1:N IVI


- The port number multiplexing technique is used, similar to the ones used in NAT44
- For example,
 - If the port multiplexing ratio is 256, each IPv6 host with IPv4-translatable address can use 256 concurrent port numbers when communicating with IPv4 Internet. Therefore, one /24 is equivalent to one /16.
 - There is no port number restriction (65,536) when these IPv6 hosts communicate with the IPv6 Internet.

Design concept of stateless 1:N IVI

- Keep the basic features of the stateless translation (IVI)
- An IPv4 public address is shared by N IPv6 hosts (in this example N=4).
- The port number range for each IPv6 host is predefined.
- The port number range is encoded in the IPv6 address (IPv4translatable address) and no signaling scheme is required.

Address-mapping algorithm

- For host K, the allowed port number (P) are – P=j*N + K (j=0, 1,..., N-1).
- For the destination port number (P), the packets will be sent to host K=(P%N) (% is the Modulus Operator).
- For example: If N=256, then ٠
 - Host K=5 is only allowed to use port numbers 5, 261, 517, 773, ..., 65,285 as the source port
 - The packets with these port numbers as the destination port number will be send to host K=5.

Extended address format (1)

0	32	40	72	127
LIR	FF	IPv4 Address	All 0	

IPv4-converted address format

0	32	40	72	88	127
LIR	FF	IPv4 Address	Port Coding	All 0	

Extended IPv4-translatable address format

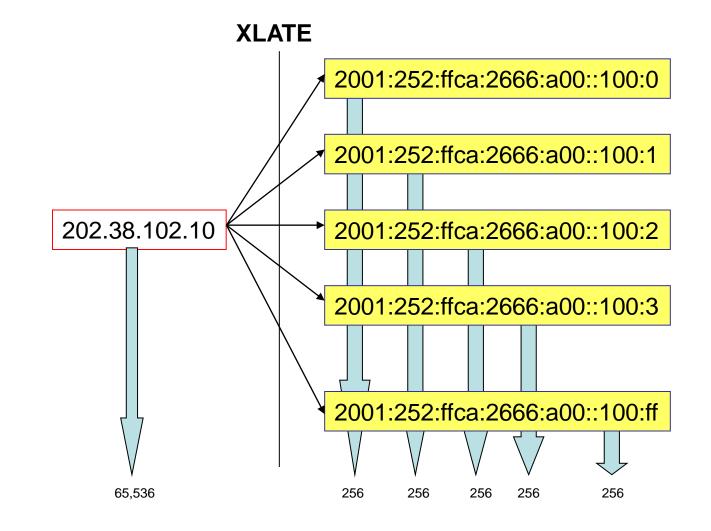
• Use 16 bits to encode the port number range (Port Coding)

Extended address format (2)

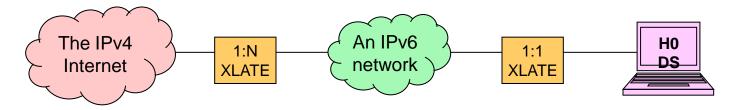
(4 bits)	Index Range(12 bits)	Multx ratio	# of	Ports
0 0	000-000	1		65,536
1	000-001	2		32,768
2	000-003	4		16,384
3	000-007	8		8,192
4	000-00 f	16		4,096
5	000-01 f	32		2,048
6	000-03F	64		1,024
7	000-07f	128		512
8	000-0ff	256		256
9	000-1ff	512		128
A	000-3ff	1,024		64
В	000-7ff	2,048		32
C	000-fff	4,096		16

Figure 5: Transport layer port number coding

- Use 16 bits to encode the port number range
 - 4 bits: multiplexing ratio
 - 12 bits: the host index


The translator behavior

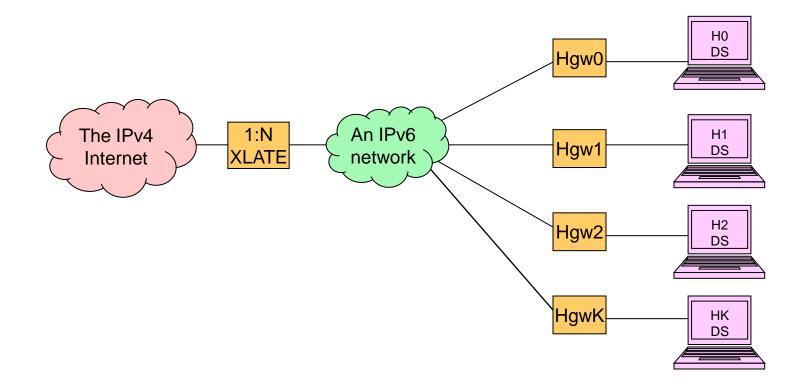
- From the IPv4 Internet to an IPv6 network
 - Src.a \rightarrow map to IPv4-converted \rightarrow Src.a6
 - Src.p \rightarrow unchanged \rightarrow src.p
 - Dst.a \rightarrow map to extended IPv4-translatale \rightarrow Dst.a6
 - Dst.p \rightarrow unchanged \rightarrow Dst.p
- From an IPv6 network to the IPv4 Internet
 - Src.a6 \rightarrow (check, map to IPv4 or drop) \rightarrow Src.a
 - Src.p \rightarrow (check, unchanged or drop) \rightarrow Src.p
 - − Dst.a6 \rightarrow (map to IPv4 or drop) \rightarrow Dst.a
 - Dst.p \rightarrow (unchanged or drop) \rightarrow Dst.p


The IPv6 end system requirements

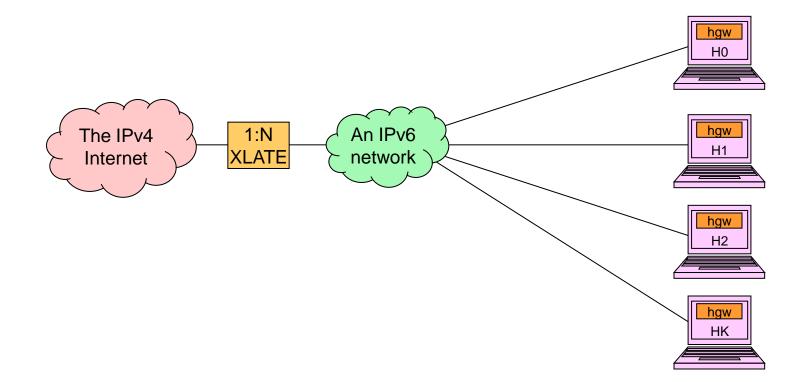
- The IPv6 end system requirements
 - Client: the end system must generate the source port numbers in the range defined by the extended IPv4-translatable address format
 - Option 1: Modify the IPv6 end system
 - Option 2: Use gateway to map the port number range to the ones defined by extended IPv4translatable address
 - Server: different well-known ports will be served by different IPv6 hosts
 - The http redirection techniques can be used without providing the port information.

Remarks for stateless 1:N IVI

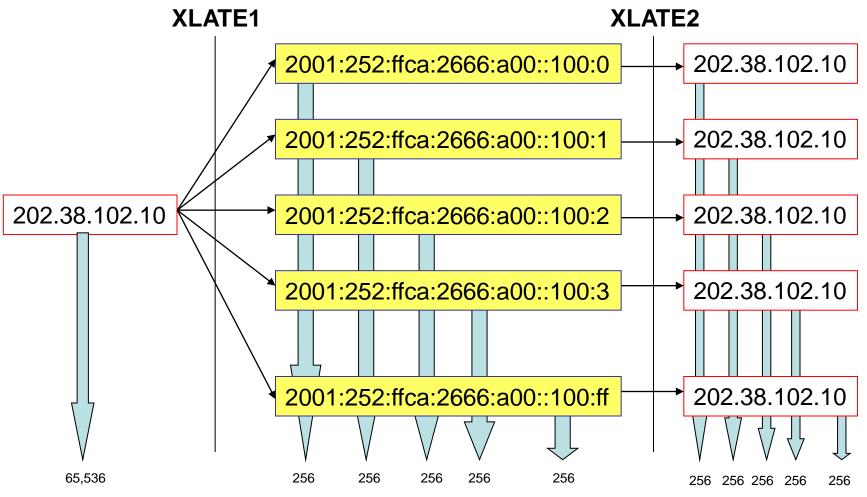
Stateless 1:N double IVI



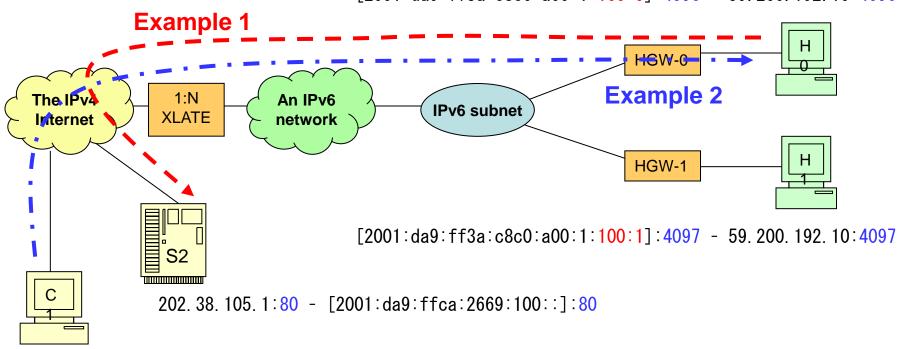
- If we use a gateway to map the port number, then we can use the same gateway to translate the IPv6 packets to IPv4.
- 1:N XLATE
 - Same as stateless 1:N IVI
- 1:1 XLATE
 - For IPv4-translatable and IPv4-converted addresses
 - 1:1 address translation (stateless)
 - Port number mapping (maintain states close to the end system)
 - Otherwise
 - IPv6 routing/IPv6 cut-through


Port number mapping algorithm

- The port number mapping device maintains a database of allowed port numbers defined by the extended IPv4-translatable address format.
- The end system randomly generated source port can be mapped to the allowed port based on the extended IPv4-translatable address format and the database.
- Different mapping rules may apply to
 - The Well Known Ports (0-1,023).
 - The Registered Ports (1,024-49,151).
 - The Dynamic and/or Private Ports (49,152-65,535).


Home gateway implementation

End system implementation

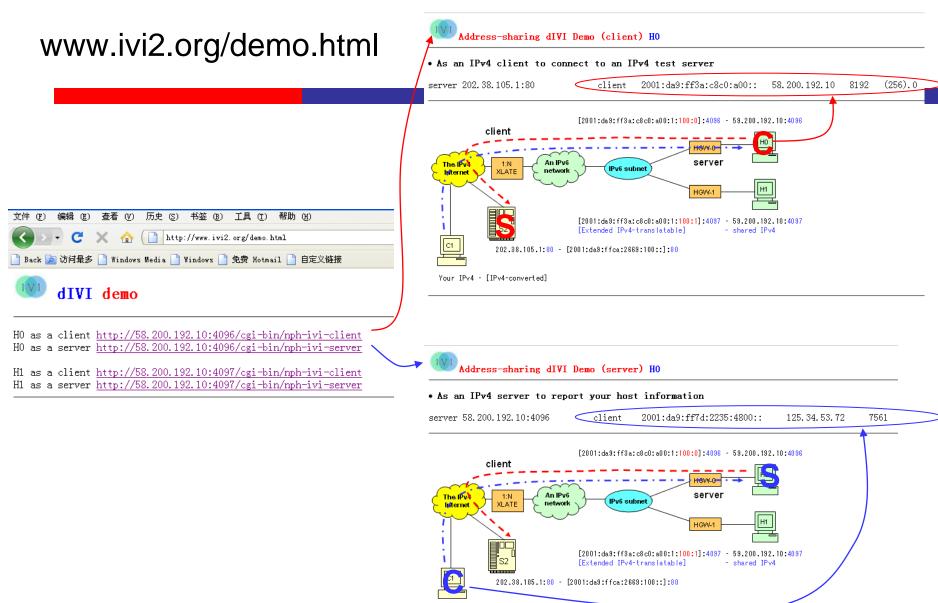


Remarks for stateless 1:N dIVI

Prototype and testing environment

• The prototypes are running using Linux

[2001:da9:ff3a:c8c0:a00:1:100:0]:4096 - 59.200.192.10:4096


125.34.46.137 - [2001:da9:ff7d:222e:8900::]

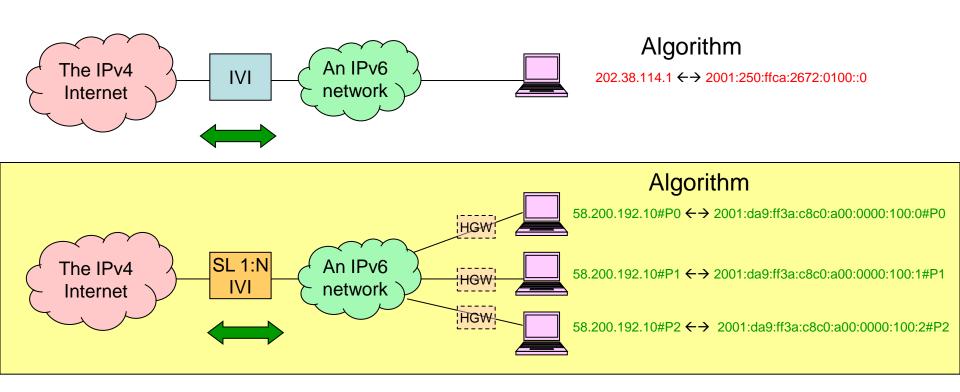
Example 1 (client)

- An address-sharing end system Host0 (58.200.192.10) in an IPv6 network behind home gateway initiates communication with Host S2 (http://202.38.105.1:80) in the IPv4 Internet
 - On the end system Host0
 - Src#p= 58.200.192.10:1881 (random port)
 - Dst#p= 202.38.105.1:80 (server port)
 - On an IPv6 network
 - Src#p= [2001:DA9:FF3A:C8C0:A00:0:100:0]:8192 (home gateway mapped port)
 - Src#p= [2001:252:ffca:2669:100::]:80 (server port)
 - On the IPv4 Internet
 - Src#p= 58.200.192.10:8192 (home gateway mapped port)
 - Dst#p= 202.38.105.1:80 (server port)

Example 2 (server)

- Host C1 (125.34.46.137) in the IPv4 Internet initiates communication with address-sharing end system Host0 (http://58.200.192.10:4096) in an IPv6 network behind home gateway.
 - On the IPv4 Internet
 - Src#p= 125.34.46.137:1856 (random port)
 - Dst#p= 58.200.192.10:4096 (server port)
 - On an IPv6 network
 - Src#p= [2001:DA9:ff7d:222e:8900::]:1856 (random port)
 - Dst#p= [2001:DA9:FF3A:C8C0:A00:0:100:0]:4096 (server port)
 - On the address-sharing end system Host0
 - Src#p= 125.34.46.137:1856 (random port)
 - Dst#p= 58.200.192.10:4096 (server port)

Your IPv4 - [IPv4-converted]


- -

Reload homepage for H0 and H1

• H0)
------	---

- As an IPv4 client to connect to an IPv4 test server
- server 202.38.105.1:80 client 2001:da9:ff3a:c8c0:a00:: 58.200.192.10 8448 (256).0
- server 202.38.105.1:80 client 2001:da9:ff3a:c8c0:a00:: 58.200.192.10 8192 (256).0
- server 202.38.105.1:80 client 2001:da9:ff3a:c8c0:a00:: 58.200.192.10 8704 (256).0
- As an IPv4 server to report your host information
- server 58. 200. 192. 10:4096 client 2001:da9:ff7d:2235:4800:: 125. 34. 53. 72 7608
 server 58. 200. 192. 10:4096 client 2001:da9:ff7d:2235:4800:: 125. 34. 53. 72 7612
- H1
- As an IPv4 client to connect to an IPv4 test server
- server 202.38.105.1:80 client 2001:da9:ff3a:c8c0:a00:: 58.200.192.10 8193 (256).1
- server 202.38.105.1:80 client 2001:da9:ff3a:c8c0:a00:: 58.200.192.10 8449 (256).1
- server 202.38.105.1:80 client 2001:da9:ff3a:c8c0:a00:: 58.200.192.10 8705 (256).1
- As an IPv4 server to report your host information
- server 58.200.192.10:4097 client 2001:da9:ff7d:2235:4800:: 125.34.53.72 7618
- server 58.200.192.10:4097 client 2001:da9:ff7d:2235:4800:: 125.34.53.72 7622

Comparison (1)

Comparison (2)

- Stateless 1:1 IVI
 - server/client full-function (bi-direction initiated)
 - Restricted IPv6 addresses (few, 1:1 mapping)
 - Stateless and scalable
 - Need DNS64 and ALG
- Stateless 1:N IVI (dIVI)
 - Server/client limited function (bi-direction initiated)
 - Restricted IPv6 addresses (many, 1:N mapping)
 - Stateless and scalable
 - Do not need DNS64 and ALG (dIVI)

Summary (1)

- There is no change to the IP model
 - For the gateway implementation, there is no change to the end system and the applications.
 - It has less restriction compared with NAT44 and the NAT transversal techniques can be used
 - NAT44: both address and port number are changed
 - 1:N dIVI: only the port number is changed
 - The address and port routing is via IPv6 addresses and the operation complexity is less than what is done via RFC1918 addresses.
 - The core translator (1:N XLATE) is stateless
 - The home gateway maintains states for port number mapping only

Summary (2)

- This technique can help for the IPv4/IPv6 coexistence and encourage the transition
 - An IPv6 network can communicate with the IPv4 Internet with two directional initiation.
 - The IPv4 addresses can be used by multiple IPv6 hosts, which partially solve the IPv4 address depletion problem.
 - The total of N (N<65,536) concurrent sessions per IPv6 host can be used when communicating with the IPv4 Internet.
 - An IPv6 network can communicate with the IPv6 Internet with two directional initiation.
 - The total of 65,536 concurrent sessions per IPv6 host can be used when communicating with the IPv6 Internet.