An Architectural Perspective on Multipath Transport

draft-ford-mptcp-architecture-00

The Higher-Order Bit

- Many high-level decisions are, or can be, bigger than MPTCP and apply to any multipath transport
 - Capture these where appropriate
- Lay out the design space for multipath transport
 - Goals and considerations
- Finally, show how the MPTCP proposals fit into this multipath transport architecture
 - Split high-level MPTCP design from details
 - Map MPTCP drafts to architecture

Goals of a Multipath Transport Architecture Document

- (I)To identify functional and performance goals for a multipath transport;
- (2) To describe necessary functional decomposition of transport layer to meet the above goals;
- (3)To discuss protocol design considerations for the different components;
- (4)To discuss interfacing among components and implementation suggestions;
- (5)To discuss how the MPTCP drafts fit in this architectural framework

(Ia) Identify Functional Goals For Multipath Transport

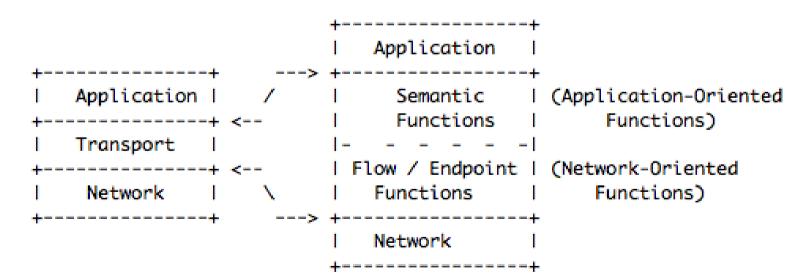
- Multihoming
 - Supporting hosts with multiple interfaces
- Application Compatibility
 - Multipath variants of existing transports should provide multipath capability for legacy apps without changing the service model
- Network Compatibility

 With Internet as is, including middleboxes
- E2E Reliability and Security (across multiple paths)
- Automatic Negotiation (with fallback to legacy nonmultipath variant)

(1b) Identify Performance/Efficiency Goals For Multipath Transport

- Resource Pooling
 - Optimizing network utility though shifting load away from congested bottlenecks to spare capacity
- TCP-Friendliness
 - Coexist gracefully with existing transport flows
- Congestion State Sharing
 - Across multiple flows within an app and/or across multiple apps
- Small Transaction support
 - Bulk transport is not the only use case; minimize multipath overhead

(2) Functional Decomposition Of Transport Layer To Achieve Goals


Network-oriented Flow/Endpoint functions

 of interest to middleboxes (endpoints (addresses,

ports); congestion control)

Application-oriented Semantic functions

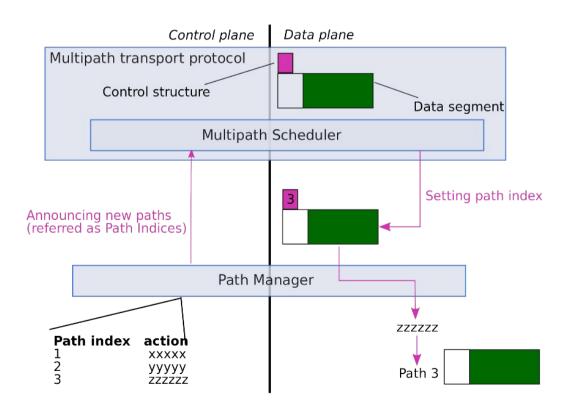
 of interest to applications (reliability, ordering, ...)

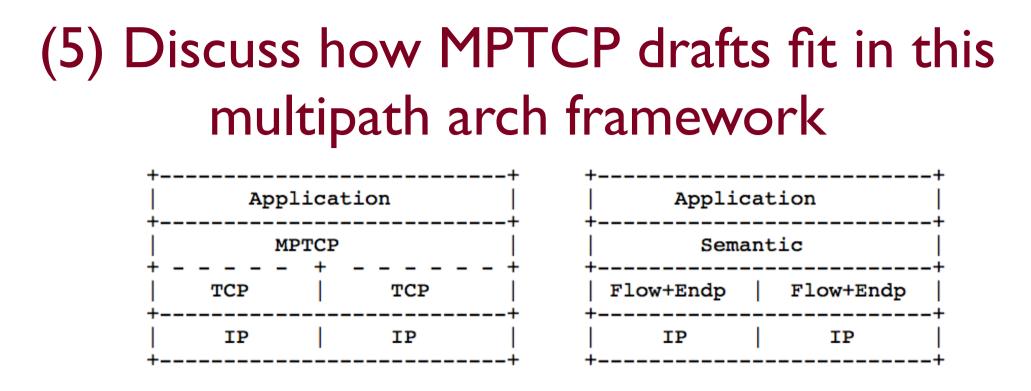
 A new location for security functions: between the two functional components

(3) Discuss Protocol Design Considerations For Different Components

- Semantic Component:
 - e2e reliability, security across multiple "flows"
 - transmission/retransmission policies (considerations for small files)
 - lightweight semantic "streams"
- Flow/Endpoint Component:
 - congestion control considerations (CC state sharing, resource pooling, PEP interactions, etc.)
 - "endpoint" identification considerations (multiple vs. single port number, NAT interactions)

(4) Discuss Interfaces Among Components and Implementation Suggestions


- Information flow between Semantic and Flow components for CC bundling / CC state sharing
 - Semantic layer needs to know about multiple flows, and pass data to appropriate flow
 - Path info (cwnd, RTT)
 - Others?
- Implementation suggestions
 - MPS / PM architecture and experience
 - Others?


MPS/PM Implementation Architecture

- Path Manager (PM)
 - Maps to Flow/Endpoint Layer
 - Discovers available paths and provide interface to them (via path indexes as an abstraction)
 - Handle necessary functions to use paths (e.g. using appropriate address for path)
- Multi-path Scheduler (MPS)
 - Maps to Semantic Layer
 - Receives data from application and encapsulates it appropriately for transmission
 - Decides which paths to use for each packet

Example MPS/PM Interface

 Internal architecture, with path announcements and using control structures to indicate between components what do do with data packets

- Maps MPTCP as Semantic, TCP as Flow/Endpoint
- Discuss architectural goals met and those not met
- How should an extended API influence the components?
- What does security protect and where should it fit?
- Others?

High-level MPTCP Design in the Architecture

- High-level design decisions take the architecture to the next step towards specification/implementation
- Identifies the bounds for a multipath-TCP design to work within
- High-level design decisions, once resolved:
 - Can be mapped to the architectural separation
 - Can be verified against the architectural goals

High-level MPTCP Design Decisions

From recent mailing list discussion (not exhaustive list)


- Protocol-related decisions
 - e.g. IP addresses used, initiators of subflows
- Congestion control algorithm
 e.g. as good as TCP on best subflow
- API
 - e.g. no changes required, but extended API optional
- Security
 - e.g. mechanisms do not interfere with middleboxes

Where next?

- This work can be separated into:
 - Generic multipath transport architecture
 - High-level design decisions for a multipath TCP
 - Analysis of multipath TCP drafts' detailed design against architectural goals and high-level design

- Please provide feedback on:
 - Goals (and structure) for the document
 - Is the draft an appropriate start for this work?

Domo Arigato!

