
Linked Congestion Control

Costin Raiciu, Damon Wischik, Mark Handley
UCL

Where we are today

•  We’ve studied practical aspects of
multipath congestion control for 1.5 years
– Solved issues with previous theoretical work

(flappiness, RTT bias)
•  Linked Increases algorithm

– draft-raiciu-mptcp-congestion-00
– Detailed analysis in tech report

Multipath TCP at work

•  Source can use multiple paths to send traffic
•  How should it allocate traffic to the two paths?

–  Using a window based protocol
–  Playing fair with TCP

Src Dst

Path 1

Path 2

Multipath TCP at work

•  Source can use multiple paths to send traffic
•  How should it allocate traffic to the two paths?

–  Using a window based protocol
–  Playing fair with TCP

Src Dst

Path 1

Path 2

Aims

•  Goal 1 (improve throughput): when
compared to using the best single path

Aims

•  Goal 1 (improve throughput): when
compared to using the best single path

•  Goal 2 (do no harm): on any available
path, take at most the same throughput
a single TCP would

Aims

•  Goal 1 (improve throughput): when
compared to using the best single path

•  Goal 2 (do no harm): on any available
path, take at most the same throughput
a single TCP would

•  Goal 3 (balance congestion) move
traffic onto least congested links as long
as goals 1 and 2 are met

Goals 1&2 Imply
Bottleneck Fairness

Src Dst

SrcTCP DstTCP

Goal 3 Implies
Resource Pooling

10

3

3
10

Srca

Srcb

Srcc

Dsta

Dstb

Dstc

10 Mb/s

10 Mb/s

10 Mb/s

10 Mb/s

13

13

13

6.5
6.5

Can we use existing
algorithms?

•  Independent TCP on each subflow
– Breaks goals 2 and 3

•  Theoretical work (Kelly et al)
– Flappy – tends to allocate all traffic to a

single subflow
– Breaks goal 1 due to RTT dependence

Linked Increases Algorithm

•  Preserves the basic window-based
AIMD behavior that has kept the
Internet running for ~20years

•  Tweaks the increase phase

What is changing?
•  We only change behavior in congestion

avoidance phase
•  All other algorithms are unchanged, and

will run independently per subflow
– Slow start
– Fast retransmit/fast recovery
– SACK
– RTT estimation
– …

Linked Increases Algorithm

•  On each ack, TCP NewReno increases
window by:

€

bytes_ acked ⋅mss
cwnd

Linked Increases Algorithm

•  On each ack, TCP NewReno increases
window by:

•  On each ack on path i, increase cwndi by
€

bytes_ acked ⋅mss
cwnd

€

α ⋅ bytes_ acked ⋅mssi
tot _cwnd

Linked Increases Algorithm

•  On each ack, TCP NewReno increases
window by:

•  On each ack on path i, increase cwndi by
€

bytes_ acked ⋅mss
cwnd

€

α ⋅ bytes_ acked ⋅mssi
tot _cwnd

Linked Increases Algorithm

•  On each ack, TCP NewReno increases
window by:

•  On each ack on path i, increase cwndi by
€

bytes_ acked ⋅mss
cwnd

€

α ⋅ bytes_ acked ⋅mssi
tot _cwnd

Tuning α

•  We know loss rates and rtts
– We know the throughput a TCP would get

on the best path
– We can compute α by solving a simple

equation

Tuning α

•  Formula

€

α = tot _cwnd
max

i

cwndi ⋅mssi
2

rtti
2

cwndi ⋅mssi
rttii

∑

2

Is this practical?

•  Compute α only when cwnd grows by
one mss
– Gives good precision at low cost

•  We can do all operations with integers

Capping Increases

•  α can be arbitrarily large
•  On certain paths this may make

multipath subflows be more aggressive
than TCP

Capping Increases

•  α can be arbitrarily large
•  On certain paths this may make

multipath subflows be more aggressive
than TCP

•  To avoid this, just cap!

€

min α ⋅ bytes_ acked ⋅mssi
tot _cwnd

,bytes_ acked ⋅mssi
cwndi

Emergent Behavior

•  Linking the increase allocates
proportionally more window to subflows
with lower loss rates

•  Tuning α scales the total window such
that the desired throughput is achieved

Linked Increases Implementations

•  Implemented in
– Simple cwnd simulator, RTT based
– Packet-level simulator [available soon]
– Userland Linux stack [available on demand]

•  Ran extensive experiments
– Linked Increases gets throughput within

+/-10% of best TCP

Experiment: Throughput

 1MB/s

 100KB/s
SrcB

SrcA

SrcC

DstB

DstA

DstC

100ms

500ms

Experiment: Throughput

 1MB/s

 100KB/s
SrcB

SrcA

SrcC

DstB

DstA

DstC

100ms

500ms

Throughput: SrcA 520KB/s
 SrcB 510KB/s
 SrcC 71KB/s

Experiment: Bottleneck

DstA

SrcB DstB

SrcA 500KB/s

50ms

Experiment: Bottleneck

Throughput: SrcA 240KB/s
 SrcB 260KB/s

DstA

SrcB DstB

SrcA 500KB/s

50ms

cwnd1=cwnd2 α = 0.66

Experiment: Bottleneck [2]

DstA

SrcB DstB

SrcA 500KB/s

50ms

+250ms

Experiment: Bottleneck [2]

Result: SrcA 255KB/s
 SrcB 245KB/s

DstA

SrcB DstB

SrcA 500KB/s

50ms

+250ms

cwnd1=cwnd2 α = 0.89

Resource Pooling Experiment
SrcaSrcbSrcc

DstaDstbDstc

Srcd

Dstd

50
0

KB
/s

50
0

KB
/s

20
0

KB
/s

50
0

KB
/s

50
0

KB
/s

Resource Pooling Experiment
SrcaSrcbSrcc

DstaDstbDstc

Srcd

Dstd

50
0

KB
/s

50
0

KB
/s

20
0

KB
/s

50
0

KB
/s

50
0

KB
/s

Throughput (KB/s):625 475 475 625
Uncoupled TCP: 750 350 350 750
Perfect: 550 550 550 550

Summary

•  We must couple congestion control loops to
get resource pooling and bottleneck fairness

•  Linked Increases [draft-raiciu-mptcp-
congestion-00] achieves both
–  Simple and works
– We have a working implementation

•  Is this draft ready to become a working
group document?

