LL.oad balancing models for DHT-
based Peer-to-Peer Networks
draft-harjula-p2psip-loadbalancing-survey-00

E.Harjula, M. Ylianttila



Motivation

Load balancing is an essential functionality to provide fair
load distribution between peer nodes

As shown by myriad of research efforts, DHTs’ consistent
hashing is not sufficient for providing fair load balancing in
dynamic heterogeneous networks

Additional load balancing mechanism is needed

Previous activities concerning load balancing at the
P2PSIP group, without thorough background work

Survey of existing and proposed load balancing
mechanisms is needed



Overview

Overall load balancing process

1. Measure load
2. Distribute load information

3. Balance the load

P2P load balancing models usually implement the
phases 2 and 3 of the above process

Tens of existing or proposed load balancing models

Fundamental models
Using virtual servers
Controlling the object location
Controlling the node location
Balancing the address-space

s W~



Virtual servers

Main idea: Multiple virtual servers (overlay
node instances) per node
> Static balancing effect

Varying number of VNs allocated per node
> Node capability -aware load balancing

Dynamic VN reallocation/migration
> Reactive load balancing



Controlling object location

During the insertion, object is placed on the
least loaded of several candidate nodes
(power of n choices)

> Static, capability-aware balancing effect

Dynamic object relocation
> Reactive load balancing



Controlling node location

During runtime, nodes compare their load
with other nodes. When needed, lightly
loaded nodes may relocate to split the
address space of the heavier loaded nodes.
> Dynamic, reactive capability-aware balancing effect



Address-space balancing

Each node has a fixed set of possible
locations on the overlay, of which one
providing the address space closest to the
system average Is selected

> Dynamically balances the address space among the
nodes

(Somewhat similar to controlling node location, but
different goal)



Bricf analysis

Virtual server

High

High if dynamic VN
reallocation, otherwise
no responsiveness at all

Yes if varying nr of
VNs/node, otherwise
no

=Very high maintenance
overhead

=(Also transfer cost with dynamic
VN reallocation)

Controlling
object location

High

High if dynamic object
relocation, otherwise low

Yes

=No additional maintenance
overhead

=Object lookup overhead (lower
lookup overhead & increased
maintenance overhead if
redirection pointers in use)

=Multiple hash generation in object
insertion & lookup

=(Also transfer cost with dynamic
object relocations)

Controlling
node location

High

High, if heavy node
probes, otherwise low

Yes

sMaintenance overhead
=Node lookup overhead
s Transfer cost in node relocations

Address-space
balancing

Moderate

No

No

sMaintenance overhead
=Node lookup overhead

s Transfer cost in virtual node
relocations




‘ Discussion

= Comments/Questions?




