The Negotiation Problem

Bryan Ford

Yale University

bryan.ford@yale.edu

Jana lyengar

Franklin & Marshall College

jiyengar@fandm.edu

Presentation for TSVAREA meeting — Nov 13, 2009 http://baford.info/tng

A Proliferation of Layers and Layer Combinations

Future: Ever More Layers/Combinations?

Multi-Streaming Transports SCTP [rfc4960], SST [SIGCOMM'07]

Multipath
Transports
SCTP [rfc4960],
MPTCP [WIP]

Further
Decomposition
["Breaking Up the
Transport Logjam",
HotNets'08]

Application

Stream

Channel

Network

Link

Application

Multipath Transport

Subflow Subflow

Network

Link

Application

Semantic

Isolation

Flow

Endpoint

Network

Link

The Negotiation Problem

Decisions, decisions!

Application

Transport Security

Transport

Network

Compatibility and Preference

Which combinations do both endpoints support? Which combinations do they prefer?

Host A Host B

Talk Outline

- Three negotiation strategies (2 explicit, I implicit)
 - Including a new in-band negotiation mechanism
 - Combined explicit/implicit negotiation
- A framework for negotiation
- Discussion

Negotiation Strategies

Approach 1: Try and Fall Back

Challenge I: Controlling Delay

- Failures can incur timeouts (e.g., due to NATs)
- ... potentially compounded by layering

Host A Host B

Approach 2: Try in Parallel

Challenge 2a: Redundant State

Challenge 2b: Combinations

Layering can lead to explosion of choices

Negotiation Strategies

Explicit
Out-of-band
Negotiation

Approach 3: Out-of-Band Information

Challenge 3a: Administration

DNS server must know:

- Name → IP mapping (as before)
- Entire protocol stack supported by Host B
- Protocol options?

⇒ Synchronization Nightmare?

Challenge 3b: E2E Robustness

If endpoints agree on configuration X, will it work?

Negotiation Strategies

Implicit Negotiation

Explicit
Out-of-band
Negotiation

Approach 4: In-band Negotiation

 Hosts explicitly describe possible configurations during initial "meta-communication" exchange, before actual communication commences

Message I: Initiator → Responder:

Propose Protocol Graph

Message 2: Responder → Initiator: Revise Protocol Graph

Message 3: Initiator → Responder:

Acknowledge Protocol Graph

Message 4+: According to Negotiated Stack

Concurrent Protocol Initialization

Whenever feasible:

- embed protocol-specific handshake info into graph
- run handshakes concurrently while negotiating

Key Benefits of Negotiation Model

- Happens strictly between nodes concerned
 - Users, Name server admins don't have to care
- Middleboxes can participate in process
- Protocol graph representation scales to handle:
 - Arbitrarily deep protocol stacks
 - Many alternatives per layer
- Setup whole "layer cakes" in minimal # of RTTs
 - With options

(For representing and transmitting graph, negotiation transport protocol, etc., see our HotNets '09 paper)

Contexts and Stacks

- Context ≡ underlying substrate; cannot change
- **Stack** \equiv protocols to be set up; can change

Negotiation Across Contexts

Scenario 1: Application-Level VoIP Protocol Stack Negotiation

App can't send 1 packet that's both UDP & DCCP!

Scenario 2: Application-Transparent Transport Protocol Negotiation

OS can't send 1 packet that's *both* IPv4 & IPv6!

⇒ must try each context separately

Combined Solution

- I. Identify feasible communication Context(s)
 - e.g., UDP session (IP_a:port_a, IP_b:port_b)
- 2. Negotiate **Stack** within each context:
 - a) Initiator sends a Protocol Graph Proposal
 - b) Responder returns Revised Protocol Graph
 - c) (Optional) further protocol graph revision steps
 - d) Peers commit, Acknowledge Protocol Graph
 - e) Communication proceeds via negotiated protocols

Combined Implicit/Explicit Solution

- Implicit, parallel negotiation across contexts
- Explicit, in-band negotiation within a context

A Framework for Negotiation

Negotiation Strategies

Implicit Negotiation

Explicit
Out-of-band
Negotiation

Explicit In-band Negotiation

The Negotiation Triangle

The Negotiation Triangle

For any given negotiation strategy, you get two of three desirable properties

To get all three properties, a hybrid of at least two strategies is necessary

Arigato!

The floodgates are open!

(Please join tae@ietf.org for discussions)