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Introduction
• BroadVoice16 (BV16):

– 16 kb/s narrowband speech codec with 8 kHz sampling
– Selected by CableLabs in 2004 as a standard codec in PacketCable 1.5 for Voice 

over Cable applications; later also became a standard codec in PacketCable 2.0 
– Standardized by SCTE and ANSI in 2006 as “ANSI/SCTE 24-21 2006” standard
– One of the standard codecs listed in the ITU-T Recommendation J.161

• BroadVoice32 (BV32):
– 32 kb/s wideband speech codec with 16 kHz sampling
– Standard codecs in PacketCable 2.0, “ANSI/SCTE 24-23 2007”, and ITU-T 

Recommendation J.361
• BV16 and BV32 are:

– based on Two-Stage Noise Feedback Coding (TSNFC)
– optimized for low delay, low complexity, and high speech quality
– Royalty-free and open source (both floating-point and fixed-point C)
– Visit http://www.broadcom.com/broadvoice for info & code download
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BV16 Encoder Structure
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• BV16 uses TSNFC Form 3 structure in our ICASSP 2006 paper
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BV32 Encoder Structure

• BV32 uses TSNFC Form 2 structure in our ICASSP 2006 paper
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BV16/BV32 Decoder Structure

• Similar to a CELP decoder
• BV32 uses a de-emphasis filter but not a postfilter
• BV16 does not use a de-emphasis filter but may add a postfilter
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Short-Term Prediction

• Use 8th-order short-term prediction to keep complexity low 
• LSP quantized using 8th-order MA prediction and two-stage VQ:

– 1st-stage: 8-dimensional VQ with 7-bit codebook
– 2nd-stage: BV16 uses 8-dimensional VQ with 1-bit sign and 6-bit shape

BV32 uses split VQ with 3-5 split and 5 bits each
• BroadVoice might be used in non-VoIP applications with bit errors

– Desirable to make it robust to bit errors
• Only codevectors that preserve the order of first 3 LSPs are allowed in 

the 2nd-stage VQ codebook search 
– order reversal at decoder indicates bit errors last LSP vector used
– greatly reduces distortion due to bit errors without sending redundant information
– essentially no degradation to clear-channel quality 
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• TSNFC Form 2 structure of BV32 has a lower complexity but gives a 
more constrained noise spectral shape of

• TSNFC Form 3 structure of BV16 has a higher complexity but gives a 
more general noise spectral shape of

• uses quantized coefficients while           uses unquantized ones

• for BV32;                  and                     for BV16

Short-Term Noise Spectral Shaping
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• Long-Term Prediction:
– 3-tap pitch predictor with integer pitch period
– pitch period encoded to 7 bits for BV16 and 8 bits for BV32
– pitch period range: 10 to 136 for BV16 and 10 to 264 for BV32
– 3 pitch predictor taps vector quantized to 5 bits
– pitch period and pitch taps determined in open-loop fashion to save complexity

• Long-Term Noise Spectral Shaping:
– To keep the complexity low, the noise feedback filter has a simple form of 

– λ is half of optimal single-tap pitch predictor coefficient, range-limited to [0, 1]
– The corresponding noise spectral shape is given by  
– Example:

Long-Term Prediction and
Noise Spectral Shaping
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Gain Quantization

• Excitation gain derived and quantized in open-loop to save complexity
• 1 gain/frame for BV16, and 2 gains/frame for BV32
• Gain: base-2 logarithm of average power of open-loop prediction residual
• Fixed moving-average (MA) prediction of gain using 40 ms worth of 

previous data:
– 8th-order MA predictor for BV16
– 16th-order MA predictor for BV32

• Scalar quantization of MA prediction residual of log-gain:
– 4 bits for BV16
– 5 bits for BV32
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Gain Change Limitation
• Problem: Bit errors can cause large “gain pops” in decoded speech
• Solution: Limit the maximum gain increase allowed, conditioned on the 

previous log-gain and previous log-gain change
– Train a “constraint threshold matrix” off-line:

• Row: log-gain relative to a long-term average log-gain
• Column: log-gain change between adjacent gains
• Matrix element values: 99.x percentile of observed log-gain change in natural speech

– In gain encoding, if quantized gain gives a log-gain change > threshold, reduce 
the quantized gain until < threshold, or until the smallest gain in gain codebook

– In gain decoding, if the gain code is not for the smallest gain in gain codebook 
and the decoded gain gives a log-gain change > threshold, then the gain is 
corrupted by bit errors replace with the last decoded gain value

• Result: All severe “gain pops” eliminated, no redundant bit needed,
and clear-channel performance hardly affected
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Excitation Vector Quantization

• Excitation VQ dimension = 4
– BV16: 1-bit sign, 4-bit shape, (1+4)/4 = 1.25 bits/sample
– BV32: 1-bit sign, 5-bit shape, (1+5)/4 = 1.5 bits/sample
– VQ codebook closed-loop trained

• Analysis-by-synthesis codebook search:
– concept: pass all codevectors through TSNFC structure, pick the one that gives 

minimum energy of quantization error
• Efficient VQ codebook search:

– treat TSNFC structure as a linear system with VQ codevector as input and 
quantization error vector as output

– decompose quantization error vector into Zero-Input Response (ZIR) and Zero-
State Response (ZSR) see our ICASSP 2006 paper

– further complexity reduction see our Interspeech 2006 paper
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Bit Allocation

Parameter BV16 BV32
LSP 7+7=14 7+(5+5)=17

Pitch period 7 8
3 pitch taps 5 5

Excitation gain(s) 4 5+5=10
Excitation vectors (1+4)×10=50 (1+5)×20=120
Total per frame 80 bits/40 samples 160 bits/80 samples
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Postfiltering (PF) and
Packet Loss Concealment (PLC)

• BV16 and BV32 are not bit-exact standards
• PF and PLC are both post-processing steps after decoding
• PF and PLC do not affect bit-stream compatibility
• PF and PLC are not really part of the BV16/BV32 standards
• BV16 specification gives an example PF
• BV16/BV32 specifications each gives an example PLC
• Other PF and PLC schemes can be used without affecting inter-

operability with the BV16/BV32 standards
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Complexity Comparison with
Other CELP-Based Standard Codecs*

Codec MIPS
RAM 

(kwords)
ROM 

(kwords)
Total Memory

Footprint
Algorithmic
Delay (ms)

G.728 36 2.2 6.7 9 0.625
G.729 22 2.6 14 17 15

G.729E 27 2.6 20 23 15
G.723.1 19 2.1 20 22 37.5
EVRC 25 2.5 ? ? 30
AMR 20 4.6 17 22 25
BV16 12 2 11 13 5

G.722.2 40 5.3 18 23 26.875
VMR-WB 40 9.05 ? ? 33.75
G.729.1 40 8.7 40.5 49 48.9375
BV32 17 3 10 13 5

* Most data extracted from PacketCable 2.0 spec audio codec comparison table
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G.711 u-law at 64 kb/s

G.726 at 32 kb/s

G.728 at 16 kb/s

BV16 at 16 kb/s

iLBC 20 ms at 15.2 kb/s

iLBC 30 ms at 13.3 kb/s

G.729E at 11.8 kb/s

G.729 at 8 kb/s

G.723.1 at 6.3 kb/s

G.723.1 at 5.3 kb/s

Narrowband Speech Quality Measured by 
PESQ Using 13 Languages

• All 96 sentence pairs of 13 languages in NTT 1994 database were used 
• BV16 was rated higher than all other codecs here except 64 kb/s G.711
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G.711 u-law at 128 kb/s

G.722 at 64 kb/s

G.722 at 56 kb/s

G.722 at 48 kb/s

G.722.1 at 32 kb/s

G.722.1 at 24 kb/s

BV32 at 32 kb/s

G.722.2 at 23.85 kb/s

G.722.2 at 15.85 kb/s

G.722.2 at 8.85 kb/s

Wideband Speech Quality Measured by 
Wideband PESQ Using 13 Languages

• All 96 sentence pairs of 13 languages in NTT 1994 database were used 
• BV32 was rated higher than all other codecs listed here
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Wideband Listening Test Results
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BroadVoice Subjective Speech Quality
Relative to Reference Codecs

• Dynastat did narrowband MOS test; Comsat Labs did wideband test
• 32 naïve listeners in each test
• BV16 rated statistically better than G.728, G.729, and G.726 at 32 kb/s
• BV32 rated statistically better than G.722 at 64 kb/s
• BV16/BV32 give 0.5 MOS degradation at about 5% random packet loss, 

versus 2% to 3% for most other standard speech codecs

Narrowband
Codec MOS Wideband

Codec MOS

G.711 µ-law 3.91 BV32 4.11
BV16 3.76 G.722 at 64 kb/s 3.96
G.729 3.56 G.722 at 56 kb/s 3.88

G.726 at 32 kb/s 3.56 G.722 at 48 kb/s 3.60
G.728 3.54
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Conclusion

• BroadVoice16 and BroadVoice32 are based on novel Two-Stage 
Noise Feedback Coding with following design emphases:

– Low delay: 3x to 8X lower algorithmic delay than most competing codecs
– Low complexity: 2X to 3X lower MIPS, 1.3X to 3.8X lower memory footprint 
– High speech quality:

• BV16 statistically better than toll-quality codecs G.726 at 32 kb/s, G.728, G.729
• BV32 statistically better than G.722 at 64 kb/s
• Slower degradation with increasing packet loss rate than most other codecs

• BV16 and BV32 are standard speech codecs of PacketCable 1.5/2.0, 
ANSI, SCTE, and ITU-T J.161/J.361 for VoIP over Cable applications

• BV16 and BV32 are royalty-free and open source
• BV16 and BV32 can potentially be a base layer codec of IETF      

Internet Interactive Audio Codec benefit: can make IIAC                   
inter-operable with existing ANSI/SCTE BV16/BV32 standards
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