CertlD-KeylID

(and other issues)

Syntaxes for Unambiguous Identification of
Certificates and Public Keys

(Sean Leonard, Penango, Inc.)
|ETF 77, 2010-03-22

draft-ietf-pkix-certid-keyid-01

(Not PKIX WG (yet), sorry)

Misunderstandings

Genera
Genera
Genera
Genera
Genera

identifiers) in PKIX

Name
Name
Name
Name

= Name

= |dentity

|= |dentify

= Authentication/A’zn

Name == PROTOCOL ELEMENT

*A way to represent data (sometimes, not always,

*How to use this data is context-dependent

Problem

How to identify another certificate
and a key unambiguously...
...in a GeneralName?

*Wrong question
*GeneralName == “everything EXCEPT other
certificates and keys”

Technical Problem

Given the tools we have, how can we:
safely, securely, simply, unambiguously,

and uniformly...

identify a certificate (or key) in PKIX or application-specific
protocols?

*Using the same method(s) and the same code
paths, because it’s the same problem.
*Standards Track...or BCP

Existing Cert IDs

ESSCertID 2634 ESSCertiIDv2 5035
CertID/OCSP 2560 SCVPCertID 5055

*Possibly more (haven’t reviewed everything)
*Can we just have one please?

Candidate: ESSCertIDv2

ESSCertIDv2 ::= SEQUENCE {

hashAlgorithm Algorithmldentifier
DEFAULT {algorithm id-sha256},

certHash Hash,

issuerSerial IssuerSerial OPTIONAL }

Hash ::= OCTET STRING
IssuerSerial ::= SEQUENCE {
issuer GeneralNames,
serialNumber CertificateSerialNumber }

PKIXCertID ::= ESSCertIDv2

(ASN.1 Module optional; can just be guidance to authors)

Keys

*Why???7?

*Same principles

*Same problem

*Same solution

*PKIX already does it

(just doesn’t want to admit it ©)

Keys

ObjectDigestinfo ::= SEQUENCE {
digestedObjectType ENUMERATED {
publicKey (0),
publicKeyCert (1),
otherObjectTypes (2) },
-- otherObjectTypes MUST NOT
-- be used in this profile
otherObjectTypelD OBJECT IDENTIFIER OPTIONAL,
digestAlgorithm Algorithmldentifier,
objectDigest }

Annoying, but it works

Keys by Value

SubjectPublicKeylnfo
...in certificate

No other PKIX-sanctioned way; certs or bust

Conclusions

*PKIX protocols/extensions “SHOULD” use these
*Application-specific protocols/extensions “MAY”

use these...
*But uniform tools mean uniform code to do it.
*Safe, Secure, Unambiguous
*Simple? (Close enough...)

END (of this issue)

Questions & Discussion

J * L ~
\‘thp a

152
_'013(354)
- ~*"

-,
e

aud] |

Patterns

Do we want to talk about this?
*“A method of specifying and applying access

control rules”...
*By computers
*For computer consumption
*Not human consumption per-se (if you want that, see
Subject name, draft-ietf-pkix-certimage, etc.)

L east Privilege
*Authority has authority over whole scope (all example.com),
but voluntarily chooses to restrict scope to least privilege
*Broader than single URI (http://foo.example.com/service),
but lesser than whole DNS host (*://foo.example.com/*)

Problem

*Class of resources known, defined by URIs
*Interpretation of URIs very scheme-specific
*But all URIs have common format: they are all
ASCII strings (or Unicode strings for IRIs)

*(Compare with BURLs [RFC 4468], IMAP AUTH
URLs [RFC 5092])

Specific Use Case

*(Hopefully non-controversial)

*AC Targeting Extension, RFC 5755
*Specify (honest) services that MAY use the AC

Target ::= CHOICE {
targetName [0] GeneralName,
targetGroup [1] GeneralName,
targetCert [2] TargetCert

}

Specific Use Case

Match foo.example.com/websockets/
** is invalid URI character
*Use regular expressions
*URIs complicated to parse
*Specify URI components
*Assume URI parser (app has anyway)

URI->Path = /A\/websockets/

“WebSockets:” cf. http://dev.w3.org/html5/websockets/

END (of this issue)

Questions & Discussion

