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Name Based Sockets !
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Making application development easier
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The general problem
All IP (locator) management is done by the application. 

There for, all interesting features need to be implemented 
by the application.

– Mobility

– Multi-homing

– IPv4/IPv6 interoperability

– NA(P)T traversal

– Path diversity exploitation

– Etc...

addr = gethostbyname( someString );
 ...
connect( ...,  addr, ... );
write( ... );
close( ... );
connect( ..., addr, ...);
write( ... );
close( ... );
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Two typical approaches

Application

IP

Ethernet

Transport

Surrogate addresses

• HIP
• Shim6
• MobileIP
• Provider Independent 
addresses (e.g. with BGP) 

Socket abstractions

• .NET
• Java
• Python
• ...
• Practically any language 
or framework 
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Surrogate addresses

“Application transparency gives 
backwards compatibility (API)”

• Extra name spaces.

• Extra resolutions (more indirections)

• Applications are not aware, hence still 
might try to solve issues in app-space.

Application

IP

Ethernet

Transport

Surrogate addresses
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Socket abstractions

Developers seem to like them...

• One implementation for every framework

• More often than not
– Resolve once

– Reuse IP
– Reuse IP
– Reuse IP
– Reuse IP

– Reuse IP

– Reuse IP

Application

IP

Ethernet

Transport

Socket abstractions
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What do we want?

• No new indirections

• No new delays (e.g. first packet delay)

• Address management
– Mobility

– Multi-homing

– Renumbering

– IPv4/IPv6 interoperability

– NAT penetration

• Backwards compatibility
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Components

• API

• Initial name exchange

• Address updates

• Backwards compatiblity (on the road map)
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API
fd = socket( AF_NAME, SOCK_STREAM, 0);

struct sockaddr_name name_sock;

// Initialize name_sock with remote name

bind( fd, name_sock, sizeof(name_sock));

connect( fd, name_sock, sizeof(name_sock));

write(fd, send_buffer, len);

read(fd, recv_buffer, len);
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The components (API)

• listen() - Prep for incoming session

–  fd = listen( local_name, peer_name, service, transport );

• open() - Initiate outgoing session

–  fd = open( local_name, peer_name, service, transport );

• accept() - Receive incoming session

–  accept( peer_name, fd );</t>

• read() - Receive data

– data = read( fd );

• write() - Send data

– write( fd, data );

• close() - Close session

– close( fd );
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Initial name exchange
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Traditional

Application Application
Operating 

system
Operating 

system

Name: host.left.org
IP: a.b.c.d

Name: host.right.org
IP: w.x.y.z
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Traditional

Application Application
Operating 

system
Operating 

system

Name: host.left.org
IP: a.b.c.d

Name: host.right.org
IP: w.x.y.z

1. Send to
    host.right.org

Listen

From: a.b.c.d
To: w.x.y.z

I like this!
I'll reply.

Resolve to
    w.x.y.z

From: w.x.y.z
To: a.b.c.d
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Name exchange

Application Application
Operating 

system
Operating 

system

Name: host.left.org
IP: a.b.c.d

Name: host.right.org
IP: w.x.y.z

Send to
host.right.org

ListenFrom: a.b.c.d 
To: w.x.y.z 

I like this!
I'll reply.

Resolve to
    w.x.y.z

From: w.x.y.z 
To: a.b.c.d

From: host.left.org
To: host.right.org

From: host.right.org
To: host.left.org

From: a.b.c.d
To: w.x.y.z

From: w.x.y.z
To: a.b.c.d

Name in the
reply = 
Upgraded
hosts!
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Name exchange

Application Application
Operating 

system
Operating 

system

Name: host.left.org
IP: a.b.c.d

Name: host.right.org
IP: w.x.y.z

Send to
host.right.org

ListenFrom: a.b.c.d 
To: w.x.y.z 

Resolve to
    w.x.y.z

From: w.x.y.z 
To: a.b.c.d

From: host.left.org
To: host.right.org

From: host.right.org
To: host.left.org
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Backwards compatibility

Application Application
Operating 

system
Operating 

system

Name: host.left.org
IP: a.b.c.d

Name: host.right.org
IP: w.x.y.z

1. Send to
    host.right.org

ListenFrom: a.b.c.d 
To: w.x.y.z 

Resolve to
    w.x.y.z

From: w.x.y.z 
To: a.b.c.d

From: host.left.org
To: host.right.org Ignore that

weird extension.
But reply to
the packet.

No name-header
sent back.
I'll try N more times
and then giveup.
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The current prototype

• Supports TCP

– Uses TCP semantics

• socket(), listen(), open(), accept(), read(), write()

• Supports Shim6

– Well, to a certain extent, we are working on it  :)

• Exchanges names

• Linux

– Ubuntu (client/server)

– Android (client)

Implementation by Juan Lang (UC Davis)
and by Zhongxing Ming (Tsinghua University)
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Current development

• Support for UDP
– Using TCP-like semantics

• Mobility/Multi-homing
– Shim6

• Collaboration between
– Ericsson

– Tsinghua University

– Swedish Institute of Computer Science
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The road map

• IPv4/IPv6 Interoperability

• NAT penetration

• Path diversity utilization

• Naming resolution (depth)
– Host

– Application

– Etc...

• And more... Do you have any suggestions?
Please let us know!
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Questions?
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