
1

Name based sockets

2010-07-26 IETF 78 Maastricht

http://www.ietf.org/id/draft-ubillos-name-based-sockets-01.txt

Javier Ubillos

 Swedish Institute of
Computer Science

July 25th, 2010

2

Name Based Sockets !

2010-07-26 IETF 78 Maastricht

Making application development easier

3

The general problem
All IP (locator) management is done by the application.

There for, all interesting features need to be implemented
by the application.

– Mobility

– Multi-homing

– IPv4/IPv6 interoperability

– NA(P)T traversal

– Path diversity exploitation

– Etc...

addr = gethostbyname(someString);
 ...
connect(..., addr, ...);
write(...);
close(...);
connect(..., addr, ...);
write(...);
close(...);

2010-07-26 IETF 78 Maastricht

4

Two typical approaches

Application

IP

Ethernet

Transport

Surrogate addresses

• HIP
• Shim6
• MobileIP
• Provider Independent
addresses (e.g. with BGP)

Socket abstractions

• .NET
• Java
• Python
• ...
• Practically any language
or framework

2010-07-26 IETF 78 Maastricht

5

Surrogate addresses

“Application transparency gives
backwards compatibility (API)”

• Extra name spaces.

• Extra resolutions (more indirections)

• Applications are not aware, hence still
might try to solve issues in app-space.

Application

IP

Ethernet

Transport

Surrogate addresses

2010-07-26 IETF 78 Maastricht

6

Socket abstractions

Developers seem to like them...

• One implementation for every framework

• More often than not
– Resolve once

– Reuse IP
– Reuse IP
– Reuse IP
– Reuse IP

– Reuse IP

– Reuse IP

Application

IP

Ethernet

Transport

Socket abstractions

2010-07-26 IETF 78 Maastricht

7

What do we want?

• No new indirections

• No new delays (e.g. first packet delay)

• Address management
– Mobility

– Multi-homing

– Renumbering

– IPv4/IPv6 interoperability

– NAT penetration

• Backwards compatibility

2010-07-26 IETF 78 Maastricht

8

Components

• API

• Initial name exchange

• Address updates

• Backwards compatiblity (on the road map)

2010-07-26 IETF 78 Maastricht

9

API
fd = socket(AF_NAME, SOCK_STREAM, 0);

struct sockaddr_name name_sock;

// Initialize name_sock with remote name

bind(fd, name_sock, sizeof(name_sock));

connect(fd, name_sock, sizeof(name_sock));

write(fd, send_buffer, len);

read(fd, recv_buffer, len);

10

The components (API)

• listen() - Prep for incoming session

– fd = listen(local_name, peer_name, service, transport);

• open() - Initiate outgoing session

– fd = open(local_name, peer_name, service, transport);

• accept() - Receive incoming session

– accept(peer_name, fd);</t>

• read() - Receive data

– data = read(fd);

• write() - Send data

– write(fd, data);

• close() - Close session

– close(fd);

2010-07-26 IETF 78 Maastricht

11

Initial name exchange

12

Traditional

Application Application
Operating

system
Operating

system

Name: host.left.org
IP: a.b.c.d

Name: host.right.org
IP: w.x.y.z

13

Traditional

Application Application
Operating

system
Operating

system

Name: host.left.org
IP: a.b.c.d

Name: host.right.org
IP: w.x.y.z

1. Send to
 host.right.org

Listen

From: a.b.c.d
To: w.x.y.z

I like this!
I'll reply.

Resolve to
 w.x.y.z

From: w.x.y.z
To: a.b.c.d

14

Name exchange

Application Application
Operating

system
Operating

system

Name: host.left.org
IP: a.b.c.d

Name: host.right.org
IP: w.x.y.z

Send to
host.right.org

ListenFrom: a.b.c.d
To: w.x.y.z

I like this!
I'll reply.

Resolve to
 w.x.y.z

From: w.x.y.z
To: a.b.c.d

From: host.left.org
To: host.right.org

From: host.right.org
To: host.left.org

From: a.b.c.d
To: w.x.y.z

From: w.x.y.z
To: a.b.c.d

Name in the
reply =
Upgraded
hosts!

15

Name exchange

Application Application
Operating

system
Operating

system

Name: host.left.org
IP: a.b.c.d

Name: host.right.org
IP: w.x.y.z

Send to
host.right.org

ListenFrom: a.b.c.d
To: w.x.y.z

Resolve to
 w.x.y.z

From: w.x.y.z
To: a.b.c.d

From: host.left.org
To: host.right.org

From: host.right.org
To: host.left.org

16

Backwards compatibility

Application Application
Operating

system
Operating

system

Name: host.left.org
IP: a.b.c.d

Name: host.right.org
IP: w.x.y.z

1. Send to
 host.right.org

ListenFrom: a.b.c.d
To: w.x.y.z

Resolve to
 w.x.y.z

From: w.x.y.z
To: a.b.c.d

From: host.left.org
To: host.right.org Ignore that

weird extension.
But reply to
the packet.

No name-header
sent back.
I'll try N more times
and then giveup.

17

The current prototype

• Supports TCP

– Uses TCP semantics

• socket(), listen(), open(), accept(), read(), write()

• Supports Shim6

– Well, to a certain extent, we are working on it :)

• Exchanges names

• Linux

– Ubuntu (client/server)

– Android (client)

Implementation by Juan Lang (UC Davis)
and by Zhongxing Ming (Tsinghua University)

2010-07-26 IETF 78 Maastricht

18

Current development

• Support for UDP
– Using TCP-like semantics

• Mobility/Multi-homing
– Shim6

• Collaboration between
– Ericsson

– Tsinghua University

– Swedish Institute of Computer Science

2010-07-26 IETF 78 Maastricht

19

The road map

• IPv4/IPv6 Interoperability

• NAT penetration

• Path diversity utilization

• Naming resolution (depth)
– Host

– Application

– Etc...

• And more... Do you have any suggestions?
Please let us know!

2010-07-26 IETF 78 Maastricht

20 2010-07-26 IETF 78 Maastricht

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

