
DECADE Requirements

draft-gu-decade-reqs-05draft-gu-decade-reqs-05

Yingjie Gu, David A. Bryan, Y. Richard Yang, Richard Alimi

IETF-78 Maastricht, DECADE Session

1



Changes Since -04

• Author list changed

• Added one new major requirement (cross-platform 
access)

• Clarification on storage management
– May be a logical function, resides in the service provider 

space/provided by providerspace/provided by provider

• Clarification on use of optimizations for 
authorization
– May use optimizations to prevent checking credentials 

every call (i.e., authenticated connections) as long as 
permissions are preserved

2



Overview

• Draft presents the requirements, as well as 
the rationale behind them

• Focus is on chartered work, keeping scope 
as narrow as possible, while trying to allow 
for reusefor reuse

– Avoid non-charter application requirements that 

will widen the scope of work in the group

• Broken down by category

3



General Principles
• Core data storage operations: read/write/delete

– Explicit control over in-network storage (contrast to P2P caching)

– Network element likely operated by service provider

• Low-latency access
– P2P applications may have constraints on delivery time

• Efficient transfer among multiple storage servers
– Data transfer between storage servers avoids last-mile upload

• Low management costs for providers

• Application-independent API
– Allow many types of applications to take advantage (so long as 

doesn’t increase complexity for base P2P use case)

• Client control over resource allocation
– Bandwidth (e.g., rate/proportion/priority), storage quota, connections

• Allow for small object size
– Some P2P apps deliver data in small chunks (e.g., 16KB) 4



Data Access

• User can read/write from own storage

– May also allow negotiation of data transport 

protocol

• Define and enforce access control policies for 
remote peersremote peers

– Note that remote peers may be in different 

admin/security domains

• Allow server-to-server transfers

– Improve efficiency, data portability, maintenance 

reasons

5



Data Management

• Protocol agnostic with respect to storage service
– Be able to offer different storage service levels (e.g., 

multiple copies, longevity) using same protocol/API

• User can get current resource usage and limits 
(including list of stored objects)
– Make local resource allocation decisions; application – Make local resource allocation decisions; application 

restarts

• Current proposal: Simple set of operations
– Write model: allow append, but no update of existing 

data. Single writer for an object 

– Delete model: explicit delete, or TTL based

– Read model: Multiple readers, read before completely 
written, parallel or pipe-lined read

6



Simple Operations: Rationale
• Major considerations

– Semantics under multiple writers and read/write conflicts vastly 
increases complexity

– Updating data in-place leads to consistency issues

– Erred on side of design that is simple but perhaps slower

• Current requirements
– Allow multiple, concurrent readers– Allow multiple, concurrent readers

• P2P client uploads to multiple peers concurrently

– Allow readers to access data before fully-written

• Avoid store-and-forward delays to reduce latency, in particular for large 
object

– Avoid update operation for already-written data (immutability)

• However, allow appending

• Possibly could have performance optimization through 
relaxing consistency requirements

• WG needs to consider and discuss these carefully. Looking 
for input. 7



Resource Control

• Allow user to define resource control policies 

between concurrently-running applications

– Apps may be on different machines, or may not directly 

communicate

• Allow per-peer, per-data resource control

– e.g., per-peer BW control or certain blocks with higher 

priority

• For discussion in WG

– Requirements on mechanism to define resource control 

for remote peers' requests

• Decision has impact on latency and load on server

8



Authorization

• Per-peer (user), per-data read access

– Authorize particular peers to retrieve particular 

content

• Per-peer (user) write access

– Authorize particular set of peers to store content– Authorize particular set of peers to store content

• For discussion in WG / Future work

– Requirements on mechanism to define access 

control for remote peers' requests

• Again, decision has impact on latency and load on 

server

9



Data Availability

• Allow (authorized) offline-access to user's 
storage

– Handle intermittent connectivity, or when no app 

actively running

10



Error Conditions

• Indicate error if insufficient resources

– Requested resources (e.g., storage) not available

• Indicate error if content unavailable or deleted

– Provider may need reject, delete or quarantine data

– DECADE does NOT indicate how such data identified– DECADE does NOT indicate how such data identified

– … but should not cause applications to break

• Allow server to reject requests/connections if 

overloaded

– Server should not be forced to undertake new work if 

overloaded

11



Protocol Requirements

• Support for peers behind NATs/Firewalls

• No unsolicited inbound messages to clients

– For simplicity, clients don’t have to listen/receive 

requests

• Platform agnostic encoding• Platform agnostic encoding

– Information such as metadata should be stored 

in an OS and architecture independent format

12



Other Requirements

• Other requirements for discussion in WG

– Data naming

– Reliability/persistence

• Security requirements are essential

– Not yet specified: some will be dependent on 

decision about architecture/approach taken, 

some are independent

13



Comments and questions?

14


