Requirements for Energy Management

draft-quittek-power-monitoring-requirements-02

J. Quittek, R. Winter, T. Dietz, B. Claise, M. Chandramouli

IETF 79 EMAN requirements

What is going on?

- reducing power consumption has become an important issue
 - buildings, transportation, datacenters ...
 - ... and also in the Internet
- global warming
 - goal: reduce carbon emissions
- significant increase in energy cost
 - goal: reduce operational cost

What is needed for a green Internet?

- low power electronics
- energy-saving protocols
 - e.g. energy efficient Ethernet (802.3az)
- energy-efficient device design
 - low-power and stand-by modes for each module in a device
- active power management
 - power down or switch off modules of devices that are not under heavy/any load
- monitoring power states and consumption

Why is monitoring desirable?

- monitoring does not directly save energy
 - it rather consumes additional energy
- however ...
 - it helps identifying possible savings
 - it is needed to evaluate effectiveness of saving measures
 - it can be used to quantify equipment's total cost of ownership (TCO)
 - it can be useful for dynamic power management

What needs to be monitored? (1)

wish list for power state monitoring

- actual power state
 - e.g. full power, low-power, stand-by/sleep, off
 - times spent in each state
 - duration of last time period in each state
 - number of transitions to each state
 - cause for last transition
- current power source (AC/battery)
 - times spent on each source
 - duration of last time period on each source

What needs to be monitored? (2)

wish list for energy consumption monitoring

- power (current energy consumption rate)
- energy consumption (accumulated)
 - in total and per power state
 - for which time intervals?
- it's easy to extend the list much more
 - power quality
 - battery status

Meta Information

- accuracy of meter
- AC or DC
- power measurement interval
- real or apparent power
- reporting interval

• • • •

What about control?

- It appears to be useful having means to set the power state of a device
 - set to sleep, wake up, etc.
- The eman charter covers control for the architecture, but not for the MIB modules.
- However, what would be needed is probably just a single writable object for the desired power state.

Remote Power Monitoring Examples I

- Power Distribution Units (PDUs) / power strips
 - switch on/off per socket
 - power/energy monitoring per socket

- Power over Ethernet (PoE) sourcing devices
 - PoE switches monitor and control power supply of attached devices
 - unfortunately: per-port power monitoring not supported by PoE MIB module

Remote Power Monitoring Examples II

energy data collectors

- data center / building / sensor network
- often non-IP communication between probes and collectors
- wired (powerline, field bus, non-standard) and wireless
- in some cases intermittent connectivity
- with just a single client device: protocol converter

• devices in examples act as mid-level managers

- collecting power information
- discovering and identifying, adding context to concerned devices
- providing structured information to energy management system

we need an energy management framework

- defining role of mid-level manager
- modeling relationship between mid-level manager and monitored devices (parent – child)
- defining common terms and categories (power states, etc.)

History

- initial proposal presented at IETF 75
- requirements discussed at IETF 76
 - draft-quittek-power-monitoringrequirements-00
- four MIB modules submitted for discussion at IETF 77
- two further drafts at IETF 78
- IETF 79: EMAN WG, more drafts, vivid discussions on own mailing list

What do we have already?

- RFC 4268 (Entity State MIB)
 - standby status (hot, cold, providing service)
- RFC 3621 (Power Ethernet MIB)
 - good information on small devices powered with PoE
 - accessible at power sourcing equipment
- RFC 1628 (UPS MIB)
 - good information for UPS protected devices
- RFC 3433 (Entity Sensor MIB)
 - generic, can be used for power monitoring
- DMTF DSP 1027 (Power State Management Profile)
 - targeted at hosts, using Common Information Model (CIM)
 - rather device profile than actual monitoring
- ACPI (advanced configuration and power interface)
 - Power monitoring and control of PC motherboards
- and many more ... but not all we need is already there

IETF 79 EMAN requirements

What is needed?

(The charter gives you already the answer.)

- reporting power, energy consumption, power states, statistics
- reporting power quality
- reporting battery status
- (setting power state)
- this sounds rather straightforward Isn't there any problem?

Big issue: identification

- identification of the energy consumer
 - for which device are these power values?
 - obvious for devices reporting on themselves
 - doable for PoE switches
 - they know IP and MAC address of the consumer
 - tricky for power strips
 - they know just the socket number
 - what is a good identifier?
 - SNMP engine ID?
 - IP address?
 - socket number? PoE port number?
 - something more general?
- requirements for identification still to be done.

Minor issues

- elaboration of information to be reported (information model)
 - number of power states
 - 3, 6, 12, many?
 - information per state
 - max power? average power?
 - energy per state? further state statistics?
 - regular energy reporting
 - absolute or delta values
 - . .
- again: requirements still to be done.

Even more issues?

- probably yes.
- energy management is rather new and still to be fully explored
- let's see which challenge will come up next

• Any questions?