Key Negotiation Protocol
&
Trust Router

draft-howlett-radsec-knp

ABFAB, IETF 80
31 March, Prague.

Introduction

The ABFAB architecture does not require any
particular AAA strategy for connecting RPs to
|dPs.

This presentation describes a particular strategy
that has some advantages over some existing
strategies.

The good news: the technology is very simple.
The bad news: the motivations are less obvious.

Most of this presentation is about describing the
problem.

ABFAB architecture

Relying party

_ : |dentity Provider
domain :

: domain

JAVAVAY

server

 The ABFAB substrate provides four functions:

Transport: how messages are conveyed between client and server
Server discovery: how messages find a server

Trust establishment: how the client/server establish confidence that
they are talking to the right client/server.

Rules determination: how the client/server decide what they should
infer from the messages, and how they should behave in that regime.

RADIUS substrate (1)

Relying party

: |Identity Provider
domain @ : domain

server

Transport Hop-by-hop UDP datagram

Server discovery Hop-by-hop realm matching, static configuration at each
hop.

Trust establishment Hop-by-hop shared secret, static configuration at each
hop.

Rules determination Locally configured policy, static configuration at each

hop.

Static configuration is simple...

Send ‘ja.net’
towards
destination ‘uk’

{ JANET(UK)

IETF 80
eduroam
network

server

L.untilitisn’t.

Send ‘ja.net’

towards destination

{)

eu

IETF 81
eduroam
network

client

IETF 80
eduroam
network

o
AAA °

/\

.eu

Send ‘ja.net’
towards destination
(ukl

{ JANET(UK)

server

Static configuration doesn’t scale...

As an AAA system scales, you need to maintain more configuration across
more nodes.

The configuration is necessarily dissimilar between AAA nodes, but the
entire system needs to behave as though all nodes share a consistent view
of the entire system. Inconsistency may result in undesirable behaviour.

Inventing an ad hoc solution within a single domain is trivial. The multi-
domain case is also tractable, providing there is close coordination.

However, if ABFAB is successful the potential number of domains and
overall system size is considerable: coordination will be challenging.

We need a standard mechanism that enables AAA nodes within a large
and loosely-coupled AAA system to behave as though they share a
consistent view of the entire system.

..that’s why we have routing protocols

* We already have a protocol that allows IP routers
to replicate routing configuration: BGP.

 What if AAA configuration could be replicated
between AAA nodes using a ‘trust router’
protocol?

 AAA nodes could use this protocol to advertise:

— NAI realms: for server discovery.
— Rules regimes: for rules determination.

Trust router protocol

RADIUS substrate (2)

Relying party

: |Identity Provider
domain @ : domain

server

Transport Hop-by-hop UDP datagram
Server discovery Realm matching using Trust Router protocol
Trust establishment Hop-by-hop shared secret, static configuration at each hop

Rules determination Trust router protocol; peer known implicitly.

Well, we have RadSec...

RadSec is RADIUS over TLS or DTLS

Invoke PKI to banish hop-by-hop security; permits e2e
trust establishment.

Knowing your peer explicitly may improve rules
determination.

Other benefits:

— Prevents exposure of information to intermediate AAA
nodes.

— Reduces EAP transmission latency.

RadSec substrate (1)

Relying party : } Identity Provider

domain : : domain
| Y
g server
Transport TLS/TCP
Server discovery DNS
Trust establishment PKI
Rules determination Locally configured policy, peer known explicitly; static

configuration at each hop.

A single PKI for ABFAB deployments?

* A PKI environment is a one-to-many
relationship; an issuer’s policies may impose
costs on some subset of those RPs that are
not relevant to their business relationship(s).

* A one-to-one relationship allows the actors to
agree their requirements without

consideration of irrelevant actors in the
system.

e But pairwise credentials don’t scale, right?

Didn’t we just fix the multiple
credential problem?

 We've just invented a mechanism that enables a
single EAP credential to be used against all RPs
that trust the EAP server.

 An AAA server is just another RP; let’s apply
ABFAB to RadSec!

e “WTF!” is a perfectly understandable response at
this point.

RadSec substrate (2)

, EAP server
Relying party : : [dentity Provider
domain Q : domain
de(\»(\a\ 8 Cre
PUY;

AAA server

(EAP

authenticator)

Transport TLS/TCP
Server discovery Trust Router
Trust establishment ABFAB

Rules determination Trust Router

Key Negotiation Protocol

* KNP enables a RadSec client and server to dynamically
establish a short-lived credential for a subsequent
RadSec connection.

e KNP uses EAP authentication of credentials issued to
the AAA client by an EAP server that is also trusted by
the AAA server.

 The EAP server is called the ‘Introducer’. The process
of establishing the RadSec credential between AAA
client and server is called ‘Introduction’.

KNP substrate

: Introducer _
Relying party i (EAP server) : |dentity Provider
domain Edomain
| <eenn KUP Introduction i SRR
- ——— - : (EAP
4 authenticator)
Transport TLS/TCP
Server discovery Trust Router
Trust establishment KNP Introduction

Rules determination Trust Router

Transitive operation

* Not all AAA nodes share a common
Introducer.

* An Introducer can also be party as AAA client
or server to an Introduction.

* This enables transitive introduction: the AAA
client recurses along a path of Introducers to
the AAA server.

Transitive KNP substrate

Relying party Introducer Introducer Introducer Identity Provider
domain édomain
K1 '
Trust router K2

K3...: EVN

T T T > server
Transport TLS/TCP
Server discovery Trust Router
Trust establishment Transitive KNP Introduction

Rules determination Trust Router

@ ©

H o 6 0 0 1=

Introducer cloud

e—6@ O O 1=

@ ©

‘Active’ AAA nodes . -

‘Passive’ AAA nodes

System overview

The system actors are
Introducers and KNP-aware
(‘active’) AAA nodes.

Introducers credential trusted
AAA nodes, and each other
with long-lived credentials.
These probably correspond to
business agreements.

Introducers announce and
consume routing configuration
data (names and rules).

Transitive KNP and these long-
term credentials allow the
dynamic establishment of
short-lived RadSec credentials.

The short-lived credentials may
be cached to avoid repetitive
recursion.

The active nodes may be
proxies for non-KNP aware
(‘passive’) AAA nodes.

Conclusions

RadSec KNP places the costs associated with
establishing a business relationship with the parties

ABFAB architecture by providing a substrate with
properties that are particularly suitable for loosely-
coupled systems.

KNP is itself an application of ABFAB, that re-uses
existing components. Therefore, it does not require
substantial new invention.

Project Moonshot is planning a KNP implementation
for Q3/Q4 2011.

anon@example.com

o
I
O
O
0
m

example.com

Example 1: no
cached state

User connected to service. Its
AAA client obtains the
server realm from the
user’s NAI.

& anon@example.com

137,

1.
)

':’

o m
.

example.com

Example 1: no
cached state

AAA client determines a path
through the Introducer
cloud to the AAA server
that meets its policy.

anon@example.com
& e Example 1: no

cached state

L'\ d
guutl “‘,““\

%
am l. 11211 ‘.‘“‘-‘-‘.‘-‘l‘l

AAA client walks along the
Introducer path,
establishing a short-lived

RadSec credential at
each hop.

example.com

H—o O 0 0 1=
B-0—0—0—0—
O
L]

9 anon@example.com

"4 Example 1: no
: cached state

AAA client establishes a
RadSec connection with
the AAA server, and the
user’s credentials are

connection.

example.com

anon@example.com

Example 2:
intermediate
cached state

User connects to service. Its
AAA client obtains the
server realm from the
user’s NAI.

example.com

H o O 0 0 1=

U

O
O
O
O
]

O
O

example.com

9 anon@example.com

Example 2:
intermediate
cached state

AAA client determines a path
through the Introducer
cloud to the AAA server
that meets its policy.

9 anon@example.com

" Example 2:

intermediate
cached state

AAA client determines that it
already has a non-
expired key for an
intermediate Introducer.

O—
/@ The client begins walking
O—

O
O
O
(6
‘w

from this Introducer,

avoiding the first two
hops, establishing a
K short-lived RadSec
credential at the
subsequent hops.
K

H o O 0 0 1

example.com

B0 O 06 0 1=
0000

®

anon@example.com

example.com

Example 2:
intermediate
cached state

AAA client establishes a
RadSec connection with
- the AAA server, and the
user’s credentials are
authenticated across this
- connection.

anon@example.com

Example 3: AAA
server cached
state

User connected to service. Its
AAA client obtains the
server realm from the
user’s NAI.

example.com

i

& anon@example.com

L]

L]

o
‘

o m
.

example.com

Example 3: AAA
server cached
state

AAA client determines that it
already has a non-
expired key for the AAA
server.

B0 O 06 0 1=
0000

®

anon@example.com

example.com

Example 3: AAA
server cached
state

AAA client establishes a
RadSec connection with
- the AAA server, and the
user’s credentials are
authenticated across this
- connection.

