Framework for GMPLS and path computation support of sub-wavelength switching optical networks

CCAMP WG, IETF 80th, Prague, Czech Republic

draft-gonzalezdedios-subwavelength-framework-00

Oscar Gonzalez de Dios (Ed) <ogondio@tid.es>

Giacomo Bernini <g.bernini@nextworks.com>

George Zervas <gzerva@essex.ac.uk>

Mark Basham <mark.basham@intunenetworks.com>

Motivation and goal of the draft

- Metropolitan-regional networks: expected traffic flows will occupy the fraction of a wavelength
- Sub-wavelength data transport technologies which allow the switch of transparent sub-wavelength data-sets may be the solution and are becoming to be mature
- First commercial versions available (e.g. Intune Networks)
- More prototypes announced
- Commercial key components are available: fast tunable lasers and fast optical switches
- Goal of this draft: define the framework for enhancements and extensions to the GMPLS protocols and procedures, to allow the automatic control of sub-wavelength optical switches

Sub-wavelength optical networks

- What do sub-wavelegth optical networks allow?
 - Time-shared use of individual or multiple wavelengths of a transparent optical network infrastructure
 - Transparently switch multiple label switched paths (LSPs) over the same wavelength of any link.
- What is the granularity of sub-wavelegth optical networks?
 - Optical time-slices/packet/bursts/flows vs. e.g. wavelegths in WSON
- What are the benefits?
 - Statistically multiplex data sets at optical level (switching is performed optically)
 - Reduce the need of O/E/O conversions
 - Reduce the data processing at nodes
 - Reduce transport delay
- There are different approaches:
 - Slotted / non slotted
 - Flow switching...

Motivation to standardize

- Subwavelength transport technologies have been in the last decade in a research stage.
- First start-ups have emerged.
- So.. data plane is still vendor specific... but...
- How can the IETF help?
 - Specify a transport-agnostic GMPLS control plane able to control and provision different sub-wavelength optical transport networks on a generic way.
- What would be the benefit?
 - This would deliver interoperability between different sub-wavelength transport networks but also between sub-wavelength and WSON networks.

Sub-wavelength network resource control

- Broad time scale structured in three levels
 - Duration of the LSP
 - Short lived (e.g. minutes) or long lived (e.g. days, hours)
 - Controlled by the GMPLS
 - Optical frame (in a repeating cycle)
 - Microseconds/milliseconds duration
 - Controlled by sub-wavelength optical transport plane
 - Accommodate fixed (i.e. optical time-slots) or flexible (i.e. optical packets, time-slices) data-sets
 - Time slice
 - Fixed/flexible portion of a frame
 - Controlled by sub-wavelength optical transport plane
 - An LSP can be associated with a number of time-slices per frame
 - Multiple LSPs can share the same wavelength
- GMPLS and specific sub-wavelength optical transport control functions vertical interworking
 - Overlay model
 - Augmented model

Sub-wavelength network resource control

- Broad time scale structured in three levels
 - Duration of the LSP
 - Short lived (e.g. minutes) or long lived (e.g. days, hours)
 - Controlled by the GMPLS
 - Optical frame (in a repeating cycle)
 - Microseconds/milliseconds duration
 - Controlled by sub-wavelength optical transport plane
 - Accommodate fixed (i.e. optical time-slots) or flexible (i.e. optical packets, time-slices) data-sets
 - Time slice
 - Fixed/flexible portion of a frame
 - Controlled by sub-wavelength optical transport plane
 - An LSP can be associated with a number of time-slices per frame
 - Multiple LSPs can share the same wavelength
- GMPLS and specific sub-wavelength optical transport control functions vertical interworking
 - Overlay model
 - Augmented model

Network resource modelling [1]

- GMPLS control plane cannot be aware of the detailed sub-wavelength network resource availabilities
 - GMPLS operational dynamics (i.e. procedures and protocols) are slower than the subwavelength ones
 - Potential fast variations of sub-wavelength availabilities need to be smoothed
 - Specific aggregation procedures need to be performed by the sub-wavelength optical network transport plane control functions
- Aggregated and summarized description of sub-wavelength network resources at the GMPLS layer, to:
 - Enable the exchange of sub-wavelength TE routing information
 - Allow signaling and configuration of multiple LSPs sharing the same wavelengths
- A sub-wavelength optical network link should be described at least by:
 - The list of available wavelengths
 - For each wavelength, a sub-wavelength TE parameter accounting the free wavelength capacity

Network resource modelling [2]

GMPLS implications [1]

- The sub-wavelength switching granularities are not natively supported by GMPLS
- A sub-wavelength enabled GMPLS control plane should be responsible for the end-to-end resource reservation and routing across multiple sub-wavelength technologies
 - The key challenge is the definition of procedure and protocol extensions valid for any kind of sub-wavelength technology
 - A set of requirements to be evaluated for GMPLS enhancements have been identified
 - Signaling impact and requirements
 - Routing impact and requirements

GMPLS implications [2]

Impact on signaling

- Definition of a sub-wavelength label
 - Different formats and encodings depending on specific technologies
- Sub-wavelength traffic profiling
 - Identification of the specific sub-wavelength granularity requested for an LSP
 - Identification of sub-wavelength traffic requirements (bandwidth, delay, jitter, etc.)

Impact on routing

- Sub-wavelength awareness in the route computation process
- Advertisement of aggregated and summarized sub-wavelength availabilities
 - · Compliant with the sub-wavelength network resource modeling
- Support of a new Switching Type
 - Sub-Wavelength Switching Capability
- Support of a potential set of new LSP Encoding Types
 - · to identify different sub-wavelength technologies and encoding formats

Next steps

- Get feedback and involvement from vendors and operators
- It is the right time to tackle the control plane standardization?
- And to further continue the technical work...
- Impact on signaling
 - Definition of a sub-wavelength label
 - Different formats and encodings depending on specific technologies
 - Sub-wavelength traffic profiling
 - Identification of the specific sub-wavelength granularity requested for an LSP
 - Identification of sub-wavelength traffic requirements (bandwidth, delay, jitter, etc.)

Impact on routing

- Sub-wavelength awareness in the route computation process
- Advertisement of aggregated and summarized sub-wavelength availabilities
 - · Compliant with the sub-wavelength network resource modeling
- Support of a new Switching Type
 - Sub-Wavelength Switching Capability
- Support of a potential set of new LSP Encoding Types
 - to identify different sub-wavelength technologies and encoding formats