Problems in DC's and why ICCRG/TCPM should care

What's *new* in DCs

- High-speed access links and getting to comparable speeds to the DC core
- Operators considering multipath topologies attempting to provide full bisection bandwidth
- Very low latency, between racks its in 100s of us
- Low statmux
- Moving towards scale out designs with commodity switches
- High-burst tolerance AND low latency AND high-throughput
- Need ability to assign any service to any server to prevent resource fragmentation
- Workloads can migrate often and can require preserving connectivity

Multi-tenancy: Server/Network Virtualization

- 8-32 VMs per server depending on who you ask
- Unprecedented scale that's pushing all our protocol limits (ARMD is one such example)
- Don't trust the VM
 - Even if you do trust the VM image they don't deploy algorithms that are relevant for DC's they are all designed for the Internet
- Performance isolation is super hard
 - State-of-art-capacity sharing algorithm is TCP
 - TCP operates on the wrong granularity

Examples of fundamental problems

- Cost of ToRs deep vs shallow buffers
 - Say 200k servers/20 per ToR 10k ToRs
 - 10k * \$7000 savings = \$70 million
- Burst tolerance and Incast
 - Reduce MinRTO
 - DCTCP aims to change sender congestion control
 ICTCP which is based on a receiver window
- Performance isolation using TCP?
 - Trying to solve flow fairness

Performance Isolation in DCs

SEAWALL – CONGESTION CONTROLLED TUNNELS

What Do We Want To Achieve?

- Protect tenants from availability attacks
 Internal DoS can wreak havoc
- Enforce tenant-specific quota
 - Customers purchase their weights, or admins can assign customers' weights
- Reduce network-performance interference among tenants
 - Elimination is more difficult

What Properties Do We Want?

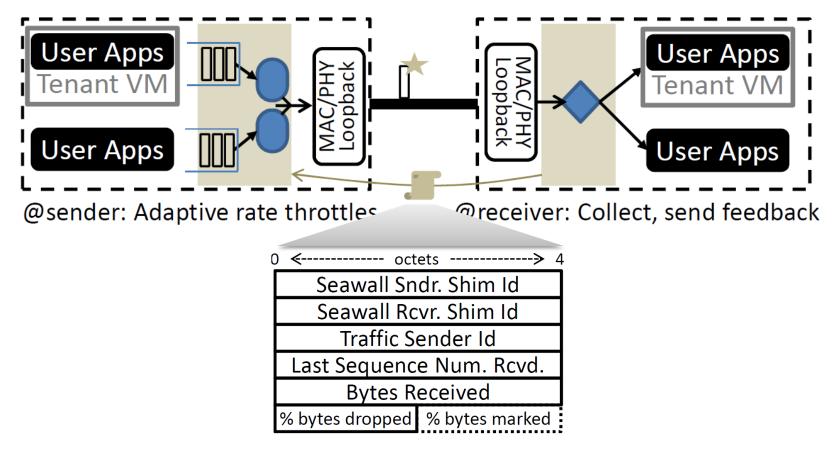
- Traffic agnostic, lean service interface
 - Customers should be allowed to use any protocol, generate any traffic patterns
 - Have customers choose their network weights *only*
- Scalable
 - Support O(10^5) VMs, O(10^4) tenants, and O(10^3) deployment events per day
- Work-conserving (efficient)
 - Allow tenants to use residual capacity
 - Max-min fairness
- Require no change to network topology and devices
 - Avoid relying on mechanisms that require VM cooperation or special features in network devices

Why Existing Solutions Fall Short?

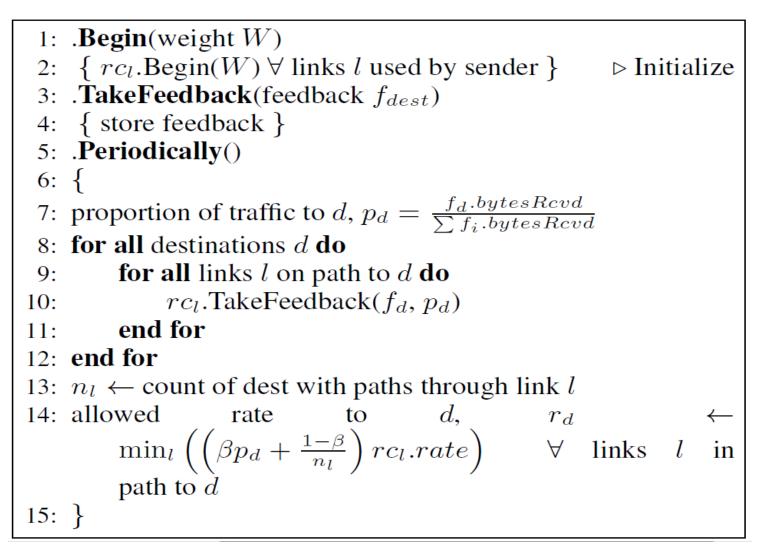
• **TCP**

- Wrong granularity
- Can't enforce quota
- Doesn't meet customers' needs for UDP
- Cannot trust TCP traffic from VMs anyway
- Link-local QoS (queueing and rate limiting)
 Not scalable, can be wasteful, and expensive
- Bandwidth reservation (RSVP, MPLS TE)
 - Overly conservative at low loads, or overly lenient at high loads
 - Enforce isolation even when congestion doesn't exist

Why Existing Solutions Fall Short?


- VL2 (Oversubscription-free network)
 - Hose-model incompliant traffic (UDP) will happen
 - Can't enforce quota
- DCTCP (Less-bursty TCP)
 - Avoids performance interference among different types of apps, but not among different tenants
 - Can't enforce quota
- QCN (IEEE's L2 congestion control)
 - Limited to a single L2 domain
 - Wrong granularity
 - Can't enforce quota
 - Introduces network-device changes

Very Basic Seawall


- Use congestion-controlled edge-to-edge tunnels
 - All 5-tuple flows between a pair of sending entities (e.g., VMs) are bundled
 - Receiver periodically sends feedback to sender, notifying congestion (if any)
- Upon congestion, weight-proportionally rate limit tunnels
 - Each sending entity is given a weight
 - Guarantee bandwidth proportional to this weight at every bottleneck link that the entity uses
 - Weighted AIMD (additive-increase, multiplicative decrease)

Birds' Eye View

• Seawall introduces a shim layer to intercept packets

Combining Feedback From Multiple Destinations

Why should IETF/IRTF care?

- These are real problems
 - Lots of innovative work happening so they will get solved one way or the other
- Design teams aren't sufficient we need to understand the landscape better and experiment
- Hypervisor as a middlebox is clearly not ideal and wont scale
- Treat the DC problems as *mainstream* because SR-IOV will force these solutions into the OS
 - OR ISPs may move towards DC designs and ask for these
- Either way they will trickle to the Internet