Problems in DC’s and why
ICCRG/TCPM should care

What’s *new™ in DCs

High-speed access links and getting to comparable speeds
to the DC core

Operators considering multipath topologies attempting to
provide full bisection bandwidth

Very low latency, between racks its in 100s of us

Low statmux

Moving towards scale out designs with commodity switches
High-burst tolerance AND low latency AND high-throughput

Need ability to assign any service to any server to prevent
resource fragmentation

Workloads can migrate often and can require preserving
connectivity

Multi-tenancy: Server/Network
Virtualization

e 8-32 VMs per server depending on who you ask

* Unprecedented scale that’s pushing all our
protocol limits (ARMD is one such example)

e Don’t trust the VM

— Even if you do trust the VM image they don’t deploy
algorithms that are relevant for DC’s they are all
designed for the Internet

* Performance isolation is super hard
— State-of-art-capacity sharing algorithm is TCP
— TCP operates on the wrong granularity

Examples of fundamental problems

* Cost of ToRs — deep vs shallow buffers
— Say 200k servers/20 per ToR — 10k ToRs
— 10k * $7000 savings = $70 million
 Burst tolerance and Incast
— Reduce MinRTO

— DCTCP aims to change sender congestion control
— ICTCP which is based on a receiver window

* Performance isolation using TCP?
— Trying to solve flow fairness

SEAWALL - CONGESTION
CONTROLLED TUNNELS

What Do We Want To Achieve?

* Protect tenants from availability attacks
— Internal DoS can wreak havoc

* Enforce tenant-specific quota

— Customers purchase their weights, or admins can
assign customers’ weights

* Reduce network-performance interference
among tenants

— Elimination is more difficult

What Properties Do We Want?

Traffic agnostic, lean service interface

— Customers should be allowed to use any protocol, generate any traffic
patterns

— Have customers choose their network weights only

Scalable
— Support O(1075) VMs, O(1074) tenants, and O(1073) deployment
events per day

Work-conserving (efficient)

— Allow tenants to use residual capacity
— Max-min fairness

Require no change to network topology and devices

— Avoid relying on mechanisms that require VM cooperation or special
features in network devices

Why Existing Solutions Fall Short?

 TCP
— Wrong granularity
— Can’t enforce quota
— Doesn’t meet customers’ needs for UDP
— Cannot trust TCP traffic from VMs anyway

* Link-local QoS (queueing and rate limiting)
— Not scalable, can be wasteful, and expensive

 Bandwidth reservation (RSVP, MPLS TE)

— Overly conservative at low loads, or overly lenient at high
loads

— Enforce isolation even when congestion doesn’t exist

Why Existing Solutions Fall Short?

e VL2 (Oversubscription-free network)

— Hose-model incompliant traffic (UDP) will happen
— Can’t enforce quota

e DCTCP (Less-bursty TCP)

— Avoids performance interference among different types of
apps, but not among different tenants

— Can’t enforce quota

 QCN (IEEE’s L2 congestion control)
— Limited to a single L2 domain
— Wrong granularity
— Can’t enforce quota
— Introduces network-device changes

Very Basic Seawall

* Use congestion-controlled edge-to-edge tunnels

— All 5-tuple flows between a pair of sending entities (e.g.,
VMs) are bundled

— Receiver periodically sends feedback to sender, notifying
congestion (if any)

 Upon congestion, weight-proportionally rate limit
tunnels
— Each sending entity is given a weight

— Guarantee bandwidth proportional to this weight at every
bottleneck link that the entity uses

— Weighted AIMD (additive-increase, multiplicative decrease)

Birds” Eye View

e Seawall introduces a shim layer to intercept packets

r=-=—-=—-"=—-""—-"——"—"="=— == —=——— 1 e i
{ User avcs I}
il Tenant VM | —— Tenant VM

MAC/PHY
Loopback
[ﬂaeqd001]
AHd/JOVIN

[I

i User Apps |]|] : I User Apps

L e e e e e e e - o St —— . o o o - — -
@sender: Adaptive rate throttles “receiver: Collect, send feedback

0 <-------------- octets =------------—- > 4
Seawall Sndr. Shim Id
Seawall Revr. Shim Id

Traffic Sender Id
Last Sequence Num. Rcvd.

Bytes Received
% bytes dropped| % bytes marked :

Combining Feedback From

Multiple Destinations

l:
2:
3:
4
5

Begin(weight 1)

{ rc;.Begin(W) V links [used by sender }
.TakeFeedback(feedback fiecst)

{ store feedback }

Periodically()

{

proportion of traffic to d, pq =

for all destinations d do
for all links / on path to d do
rc¢;. TakeFeedback(fq, pa)

fa-bytesRcvd
> f;.bytesRcud

end for
: end for
: n; <— count of dest with paths through link [
- allowed rate to d, rd

ny

> Initialize

ming ((,,Spd + 1:*‘3) TC;.?“a..te) ¥ links [

path to d

-}

%

in

12

Why should IETF/IRTF care?

These are real problems

— Lots of innovative work happening so they will get solved
one way or the other

Design teams aren’t sufficient we need to understand
the landscape better and experiment

Hypervisor as a middlebox is clearly not ideal and wont
scale

Treat the DC problems as mainstream because SR-I0V
will force these solutions into the OS

— OR ISPs may move towards DC designs and ask for these
Either way they will trickle to the Internet

