
UMA and
Dynamic Client Registration

Thomas Hardjono
on behalf of the UMA Work Group

1

http://kantarainitiative.org/confluence/display/uma/Home
http://kantarainitiative.org/confluence/display/uma/Home
http://kantarainitiative.org/confluence/display/uma/Home
http://kantarainitiative.org/confluence/display/uma/Home
http://kantarainitiative.org/confluence/display/uma/Home
http://kantarainitiative.org/confluence/display/uma/Home
http://kantarainitiative.org/confluence/display/uma/Home
http://kantarainitiative.org/confluence/display/uma/Home
http://kantarainitiative.org/confluence/display/uma/Home
http://kantarainitiative.org/confluence/display/uma/Home
http://kantarainitiative.org/confluence/display/uma/Home
http://kantarainitiative.org/confluence/display/uma/Home
http://kantarainitiative.org/confluence/display/uma/Home
http://kantarainitiative.org/confluence/display/uma/Home
http://kantarainitiative.org/confluence/display/uma/Home
http://kantarainitiative.org/
http://kantarainitiative.org/
http://kantarainitiative.org/


UMA is...

• A web protocol that lets you control authorization of data 
sharing and service access made on your behalf

• A Work Group of the Kantara Initiative that is free for 
anyone to join and contribute to

• A set of draft specifications that is free for anyone to 
implement

• Undergoing multiple implementation efforts

• Slated to be contributed to the IETF once 
“incubated” (roughly by August, in modular pieces over time)

• Striving to be simple, OAuth-based, identifier-agnostic, 
RESTful, modular, generative, and developed rapidly
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UMA players
(see also UMA Explained wiki page)
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a web user who configures an 
authorization manager with policies that 
control how it makes access decisions 
when a requester attempts to access a 
protected resource at a host

carries out an authorizing user's 
policies governing access to a 
protected resource

enforces access to the protected 
resources it hosts, as decided by 

an authorization manager

seeks access to a 
protected resource

a web user, or a corporation or 
other legal person, that uses a 
requester to seek access to a 
protected resource
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UMA’s history with OAuth
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we’re right 
about here



UMA has three steps

1. Protect a resource

• Alice introduces her Calendar host to CopMonkey: “When 
CopMonkey says whether to let someone in, do what he 
says”

2. Get authorization

• Bob tries to subscribe to Alice’s calendar but his client has 
to get a token for him, and he has to present (say) an 
identity claim to CopMonkey meets Alice’s policy

3. Get access

• Bob now has an access token with the necessary scope to 
use at the Calendar host: “This means Alice thinks it’s okay”
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UMA leverages OAuth twice: 
host-AM and requester-AM
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Overall UMA flow
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UMAnitarians submitted
draft-oauth-client-registration

• We need the option of dynamically issued client 
credentials for roughly the same reasons and with the 
same constraints (battle DoS attacks) as others do

• rev 00 of the I-D (it expired recently)

• We would be happy to revise it to state our 
emerging understanding of our requirements

• (Our emerging process for claims negotiation, leading 
to meaningful authz-scoped access, means we can 
push off strong client-side authentication to later in 
the process; stay tuned for more on this)
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Backup slides
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Comparing OAuth2 and UMA:
terms

• resource owner

• resource server

• authorization server

• client
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➡ authorizing user

➡ host

➡ authorization manager

➡ requester



Comparing OAuth2 and UMA:
concepts

• There is one resource 
owner in the picture, on 
“both sides”

• The resource server 
respects access tokens 
from “its” authz server

• The authz server issues 
access tokens based on 
the client’s ability to 
authenticate
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➡ The authorizing user may 
be granting access to a 
truly autonomous party

➡  The host outsources authz 
jobs to an authz manager 
chosen by the user

➡ The authz manager issues 
tokens based on user policy 
and “claims” conveyed by 
the requester



Comparing OAuth2 and UMA:
dynamic trust

• The client and server 
sides must meet outside 
the resource-owner 
context ahead of time

• The resource server 
meets its authz server 
ahead of time and is 
tightly coupled with it

• The resource server 
validates tokens in an 
unspecified manner, 
assumed locally
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➡ A requester can walk up to 
a protected resource and 
attempt to get access 
without registering first

➡ The authz user can mediate 
the introduction of each of 
his hosts to the authz 
manager he wants it to use

➡ The host asks the authz 
manager to validate tokens 
in real time (JWT will allow 
us to avoid this)



Comparing OAuth2 and UMA:
protocol

• Two major steps: token-
getting (with multiple 
flow options) and token-
using

• User delegation flows 
and autonomous client 
flows

• Resource and authz 
servers are generally not 
expected to 
communicate directly vs. 
through the token
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➡ Three major steps: host/
authz manager introduction 
(trust), token/authz-getting, 
and token-using

➡ (Emerging:) Token issuance 
is between autonomous 
parties; claims negotiation 
deals with delegation piece

➡ Authz manager gives host 
its own access token; host 
uses it to supply resource 
details and request token 
validation


