
UMA and
Dynamic Client Registration

Thomas Hardjono
on behalf of the UMA Work Group

1

http://kantarainitiative.org/confluence/display/uma/Home
http://kantarainitiative.org/confluence/display/uma/Home
http://kantarainitiative.org/confluence/display/uma/Home
http://kantarainitiative.org/confluence/display/uma/Home
http://kantarainitiative.org/confluence/display/uma/Home
http://kantarainitiative.org/confluence/display/uma/Home
http://kantarainitiative.org/confluence/display/uma/Home
http://kantarainitiative.org/confluence/display/uma/Home
http://kantarainitiative.org/confluence/display/uma/Home
http://kantarainitiative.org/confluence/display/uma/Home
http://kantarainitiative.org/confluence/display/uma/Home
http://kantarainitiative.org/confluence/display/uma/Home
http://kantarainitiative.org/confluence/display/uma/Home
http://kantarainitiative.org/confluence/display/uma/Home
http://kantarainitiative.org/confluence/display/uma/Home
http://kantarainitiative.org/
http://kantarainitiative.org/
http://kantarainitiative.org/

UMA is...

• A web protocol that lets you control authorization of data
sharing and service access made on your behalf

• A Work Group of the Kantara Initiative that is free for
anyone to join and contribute to

• A set of draft specifications that is free for anyone to
implement

• Undergoing multiple implementation efforts

• Slated to be contributed to the IETF once
“incubated” (roughly by August, in modular pieces over time)

• Striving to be simple, OAuth-based, identifier-agnostic,
RESTful, modular, generative, and developed rapidly

2

http://kantarainitiative.org/confluence/display/uma/Home
http://kantarainitiative.org/confluence/display/uma/Home
http://kantarainitiative.org/
http://kantarainitiative.org/
http://signup.kantarainitiative.org/?selectedGroup=11
http://signup.kantarainitiative.org/?selectedGroup=11
http://kantarainitiative.org/confluence/display/uma/Working+Drafts
http://kantarainitiative.org/confluence/display/uma/Working+Drafts
http://kantarainitiative.org/confluence/display/uma/Implementations
http://kantarainitiative.org/confluence/display/uma/Implementations
http://kantarainitiative.org/confluence/display/uma/UMA+Requirements
http://kantarainitiative.org/confluence/display/uma/UMA+Requirements
http://www.ietf.org/dyn/wg/charter/oauth-charter.html
http://www.ietf.org/dyn/wg/charter/oauth-charter.html

UMA players
(see also UMA Explained wiki page)

3

a web user who configures an
authorization manager with policies that
control how it makes access decisions
when a requester attempts to access a
protected resource at a host

carries out an authorizing user's
policies governing access to a
protected resource

enforces access to the protected
resources it hosts, as decided by

an authorization manager

seeks access to a
protected resource

a web user, or a corporation or
other legal person, that uses a
requester to seek access to a
protected resource

http://kantarainitiative.org/confluence/display/uma/UMA+Explained
http://kantarainitiative.org/confluence/display/uma/UMA+Explained

UMA players
(see also UMA Explained wiki page)

3

a web user who configures an
authorization manager with policies that
control how it makes access decisions
when a requester attempts to access a
protected resource at a host

carries out an authorizing user's
policies governing access to a
protected resource

enforces access to the protected
resources it hosts, as decided by

an authorization manager

seeks access to a
protected resource

a web user, or a corporation or
other legal person, that uses a
requester to seek access to a
protected resource

think
“resource owner”

think
“resource server”

think
“authz server”

think “client”

could be identical to resource owner or not

http://kantarainitiative.org/confluence/display/uma/UMA+Explained
http://kantarainitiative.org/confluence/display/uma/UMA+Explained

UMA players
(see also UMA Explained wiki page)

3

a web user who configures an
authorization manager with policies that
control how it makes access decisions
when a requester attempts to access a
protected resource at a host

carries out an authorizing user's
policies governing access to a
protected resource

enforces access to the protected
resources it hosts, as decided by

an authorization manager

seeks access to a
protected resource

a web user, or a corporation or
other legal person, that uses a
requester to seek access to a
protected resource

think
“resource owner”

think
“resource server”

think
“authz server”

think “client”

could be identical to resource owner or not

loosely coupled

http://kantarainitiative.org/confluence/display/uma/UMA+Explained
http://kantarainitiative.org/confluence/display/uma/UMA+Explained

UMA’s history with OAuth

4

we’re right
about here

UMA has three steps

1. Protect a resource

• Alice introduces her Calendar host to CopMonkey: “When
CopMonkey says whether to let someone in, do what he
says”

2. Get authorization

• Bob tries to subscribe to Alice’s calendar but his client has
to get a token for him, and he has to present (say) an
identity claim to CopMonkey meets Alice’s policy

3. Get access

• Bob now has an access token with the necessary scope to
use at the Calendar host: “This means Alice thinks it’s okay”

5

UMA leverages OAuth twice:
host-AM and requester-AM

6

Overall UMA flow

7

Client

Host

1a. provision
AM location

Protected
Resource

Client

Authorizing User

Step 1. User Introduces Host to AM

Requester

Authorization Server

Protected Resource

2a. provision
Resource
location

Authorization Manager (AM)

(user at browser or other user agent)

1c. authorize Host to trust AM

Step 2. Requester Gets Access Token

2b. ask for access token and scoped authz, supplying claims as demanded

Requesting
Party

metadata 1b. get metadata

1e. define
policies

OAuth 2.0

- or -

Step 3. Requester
Accesses Resource3b. validate token

2a. attempt access1d. register resources

OAuth 2.0

Policy

Analytics

Trusted
Claims

Overall UMA flow

7

Client

Host

1a. provision
AM location

Protected
Resource

Client

Authorizing User

Step 1. User Introduces Host to AM

Requester

Authorization Server

Protected Resource

2a. provision
Resource
location

Authorization Manager (AM)

(user at browser or other user agent)

1c. authorize Host to trust AM

Step 2. Requester Gets Access Token

2b. ask for access token and scoped authz, supplying claims as demanded

Requesting
Party

metadata 1b. get metadata

1e. define
policies

OAuth 2.0

- or -

Step 3. Requester
Accesses Resource3b. validate token

2a. attempt access1d. register resources

OAuth 2.0

Policy

Analytics

Trusted
Claims

host gets access token to use
at AM’s protect authz API;
ideally useser can tell host
dynamically to use this AM,

a la OpenID Provider discovery

Overall UMA flow

7

Client

Host

1a. provision
AM location

Protected
Resource

Client

Authorizing User

Step 1. User Introduces Host to AM

Requester

Authorization Server

Protected Resource

2a. provision
Resource
location

Authorization Manager (AM)

(user at browser or other user agent)

1c. authorize Host to trust AM

Step 2. Requester Gets Access Token

2b. ask for access token and scoped authz, supplying claims as demanded

Requesting
Party

metadata 1b. get metadata

1e. define
policies

OAuth 2.0

- or -

Step 3. Requester
Accesses Resource3b. validate token

2a. attempt access1d. register resources

OAuth 2.0

Policy

Analytics

Trusted
Claims

host gets access token to use
at AM’s protect authz API;
ideally useser can tell host
dynamically to use this AM,

a la OpenID Provider discovery

requesting party needs
to approach host dynamically,

to allow authz user to
advertise resource availability

widely, judging access suitability
through claims alone

UMAnitarians submitted
draft-oauth-client-registration

• We need the option of dynamically issued client
credentials for roughly the same reasons and with the
same constraints (battle DoS attacks) as others do

• rev 00 of the I-D (it expired recently)

• We would be happy to revise it to state our
emerging understanding of our requirements

• (Our emerging process for claims negotiation, leading
to meaningful authz-scoped access, means we can
push off strong client-side authentication to later in
the process; stay tuned for more on this)

8

http://mrtopf.clprojects.net/uma/draft-oauth-client-registration.html
http://mrtopf.clprojects.net/uma/draft-oauth-client-registration.html

Backup slides

9

http://kantarainitiative.org/confluence/display/uma/Home
http://kantarainitiative.org/confluence/display/uma/Home
http://kantarainitiative.org/confluence/display/uma/Home
http://kantarainitiative.org/confluence/display/uma/Home
http://kantarainitiative.org/confluence/display/uma/Home
http://kantarainitiative.org/confluence/display/uma/Home
http://kantarainitiative.org/confluence/display/uma/Home
http://kantarainitiative.org/confluence/display/uma/Home
http://kantarainitiative.org/confluence/display/uma/Home
http://kantarainitiative.org/confluence/display/uma/Home
http://kantarainitiative.org/confluence/display/uma/Home
http://kantarainitiative.org/confluence/display/uma/Home
http://kantarainitiative.org/confluence/display/uma/Home
http://kantarainitiative.org/confluence/display/uma/Home
http://kantarainitiative.org/confluence/display/uma/Home
http://kantarainitiative.org/
http://kantarainitiative.org/
http://kantarainitiative.org/

Comparing OAuth2 and UMA:
terms

• resource owner

• resource server

• authorization server

• client

10

➡ authorizing user

➡ host

➡ authorization manager

➡ requester

Comparing OAuth2 and UMA:
concepts

• There is one resource
owner in the picture, on
“both sides”

• The resource server
respects access tokens
from “its” authz server

• The authz server issues
access tokens based on
the client’s ability to
authenticate

11

➡ The authorizing user may
be granting access to a
truly autonomous party

➡ The host outsources authz
jobs to an authz manager
chosen by the user

➡ The authz manager issues
tokens based on user policy
and “claims” conveyed by
the requester

Comparing OAuth2 and UMA:
dynamic trust

• The client and server
sides must meet outside
the resource-owner
context ahead of time

• The resource server
meets its authz server
ahead of time and is
tightly coupled with it

• The resource server
validates tokens in an
unspecified manner,
assumed locally

12

➡ A requester can walk up to
a protected resource and
attempt to get access
without registering first

➡ The authz user can mediate
the introduction of each of
his hosts to the authz
manager he wants it to use

➡ The host asks the authz
manager to validate tokens
in real time (JWT will allow
us to avoid this)

Comparing OAuth2 and UMA:
protocol

• Two major steps: token-
getting (with multiple
flow options) and token-
using

• User delegation flows
and autonomous client
flows

• Resource and authz
servers are generally not
expected to
communicate directly vs.
through the token

13

➡ Three major steps: host/
authz manager introduction
(trust), token/authz-getting,
and token-using

➡ (Emerging:) Token issuance
is between autonomous
parties; claims negotiation
deals with delegation piece

➡ Authz manager gives host
its own access token; host
uses it to supply resource
details and request token
validation

