Negotiation and Extensibility

Cullen Jennings
fluffy@cisco.com
IETF 80
Why Negotiation of Algorithms and Extensions

• Addition of features, innovation, and fixes later
 – Example crypto agility: MD5 -> SHA1 -> SHA256

• Better Codecs over time

• Product differentiation
Negotiation Failures

• Client server allows the server to implement A and B then client to choose A or B (or visa versa)
 – Example: Email client does IMAP and POP, then server can choose to use either

• Peer to Peer has no client/server differentiation of capabilities
 – If two peers do not have at least one common capability, you do not have interoperability
 – Examples of problems:
 • XMPP File transfer: XEP 65, 95, 96, 47, 234
 • SIP DTMF: RTP (RFC4733), Info (many versions), KPML
 • IPv4, IPv6
Probable Extension Points for RTCWeb

- Relay protocols: STUN, TURN, The Next Thing
- RTP Profile
- RTP Header extensions
- SRTP Crypto profiles
- Codecs
- Codec parameters
- Network Statistics: Packet statistics, RTCP,...
- Non audio/video media
- Possibly media signaling protocols (active discussion but no agreement)
Legacy VOIP Equipment

• Ideally new stuff would work with 100% of old stuff
 – This is not going to happen
 – Old stuff has less than 100% interoperability with other old stuff
 – Browser security will impose constraints

• Goal should be to
 – Find right balance of working with significant fraction of modern VoIP equipment
 – Minimize cost of operation gateways
Summary

• The solution will allow negotiation of extensions
• Working group will identify what parts of the solution need to allow for extensibility
• Working group will determine a balance between ease of interoperation with legacy VoIP equipment and practicality of browser deployment
• Working group will choose (to the best of its ability) enough of a baseline to ensure we do not have negotiation failures