RTP Multiple Stream Sessions and Simulcast

draft-westerlund-avtcore-multistream-and-simulcast-00

Magnus Westerlund and Bo Burman

Ericsson
IPR Disclosure

 › Telefonaktiebolaget LM Ericsson (publ)'s has made a Statement about IPR related to this draft in https://datatracker.ietf.org/ipr/1592/
Outline

› Problem Descriptions
 – A Target Scenario
 – Simulcast
 – Multiple Streams in Advanced RTP usages
 – Bandwidth Signaling
 – Codec Control / Optimization

› Problem Summary

› Extensions
 – Multiple Streams signaling
 – Bandwidth SDP attribute
 – Simulcast Grouping
 – SRCNAME SDES item
 – Codec Control

› Way Forward
 – Architecture document
 – Extensions
A Target Scenario

Active speaker

RTP Mixer

Listener

Listener

Listener
Simulcast

When using scalable coding with inter-layer prediction, the broad arrows will be slightly smaller, but all red arrows will also have to be sent.

Simulcast: sending multiple representations of the same source.
Simulcast and Scalable Encoding

» Simulcast is both an alternative and complementary to Scalable Encoding

» The trade-offs when it comes to efficiency are different
 – SVC encoding is more efficient in sender to mixer path
 – Simulcast is more efficient in mixer to receiver path
 – Combining scalable encoding with simulcast for best of both worlds

» Simulcast is codec agnostic

» Simulcast can be done for other purposes
 – Provide two different encodings for interoperability
 – Provide redundancy for robustness
Multiple Streams

A sample client, both sending and receiving multiple video streams
Multi-Stream Layering

- An RTP Session can contain 1..N SSRCs
- An RTP Session is identified by a lower layer identifier, such as a UDP port or five tuples
- A multimedia session contains one or more RTP sessions
Multi-Stream Simulcast Layering

A single source can be simulcasted as different versions
- Same actual source in several sessions;
 don’t want to force new semantics into SSRC value

Several sources can be rendered at the same device
Multi-Stream Issues

› More advanced use cases than point to point VoIP:
 – Video conferencing
 – Telepresence
 – IPTV
 – Etc.

› This can result in multiple media streams
 – Is the end-point capable of handling multiple simultaneous media streams of the same media type?
 › Legacy capabilities is likely one SSRC per direction
 – When should additional media streams be in the same RTP session, when in a new session?
 – When streams have relations, how to express that for:
 › Retransmission
 › Redundancy
 › Simulcast
Bandwidth Signaling

› Current SDP Bandwidth signaling insufficient in handling:
 – Asymmetric bandwidth capabilities in the path
 – Asymmetric bandwidth usage inherent from application
 – When different Payload Types have different bandwidth ranges
 – When multi-stream applications use multiple streams in each direction
 – The allowed burstiness of media sources is not explicit
Codec Control / Optimization

RTP Mixer

Active speaker

Listener

Simulcast

Red, sent streams are not consumed by anyone (e.g. based and resumed request)

NOTE! Just as valid for scalable coding!
Problem Summary

- We have a general RTP architecture clarity issue
 - We need to clarify multiple SSRCs in one RTP session
 - We need to discuss when appropriate to use multiple RTP sessions
 - We need to create common principles for streams that aren’t independent, but have common source.

- We need to do this for all reasonable topologies

- Multiple SSRCs in an RTP session appear to need signaling support to avoid legacy issues
- Simulcast is good tool, we need signaling and RTP association mechanisms to make it work
- Bandwidth configuration and capability declaration in asymmetric usages and encodings needs to be improved
- Scalable Codecs and Simulcast needs additional Codec Control tools to optimize sessions
Proposed Extensions (1/4)

› Multiple Streams Signaling

 – Separated directions
 › a=max-send-ssrc:96 2
 › a=max-recv-ssrc:96 5

 – Both payload specific and payload agnostic
 › a=max-recv-ssrc:98 6
 › a=max-recv-ssrc:99 4
 › a=max-recv-ssrc:* 8
Proposed Extensions (2/4)

› Bandwidth Signaling

– b= line not possible to extend with sufficient new semantics
– Per direction and payload type (also payload agnostic)

– Per source
 › a=bw:recv pt=96 SMT:tb=64000:320
 › a=bw:recv pt=97 SMT:tb=12200:128

– Entire media level aggregate
 › a=bw:send pt=* AMT:tb=384000:512

– Allow for future needed semantics to be defined
Proposed Extensions (3/4)

- Simulcast Grouping in SDP
 - Different semantics between directions
 - `a=group:SCS 1 2 3 …` (SimulCast Send intention)
 - `a=group:SCR 4 5 …` (SimulCast Receive capability / acknowledge)

- Simulcast Source Identification in RTP
 - SDES CNAME is defined as unique per endpoint, not per source
 - *New* SDES SRCNAME unique per actual media source
 - Indicate which streams are alternative encodings to each other
Proposed Extensions (4/4)

› Codec Control extensions is forthcoming
Anticipated Document Split

Current

- RTP Session and Multi-stream Architecture
- Multi-stream Signalling
- Simulcast Grouping
- Bandwidth
- Codec Control
Proposal for Going Forward

› That AVTCORE takes on the general Architecture questions:
 – Make it clear when appropriate to use multiple streams within an RTP session
 – How should one use RTP sessions and SSRCs when having alternative, complementary or redundant streams

› That the various extensions are submitted to the appropriate WG as individual pieces for progressing:
 – AVTCORE:
 › Architecture
 › Multi-stream Signaling
 – AVTEXT:
 › Simulcast Group Signaling
 › Codec Control
 – MMUSIC:
 › Bandwidth Signaling