

RTP Multiple Stream Sessions and Simulcast

draft-westerlund-avtcore-multistream-and-simulcast-00 Magnus Westerlund and Bo Burman Ericsson

IPR Disclosure

> Telefonaktiebolaget LM Ericsson (publ)'s has made a Statement about IPR related to this draft in

https://datatracker.ietf.org/ipr/1592/

Outline

- > Problem Descriptions
 - A Target Scenario
 - Simulcast
 - Multiple Streams in Advanced RTP usages
 - Bandwidth Signaling
 - Codec Control / Optimization
- > Problem Summary
- > Extensions
 - Multiple Streams signaling
 - Bandwidth SDP attribute
 - Simulcast Grouping
 - SRCNAME SDES item
 - Codec Control
- > Way Forward
 - Architecture document
 - Extensions

A Target Scenario

draft-westerlund-avtcore-multistream-and-simulcast-00 | IETF 81 | 2011-07-14 | Page 4

Simulcast

Simulcast and Scalable Encoding

- Simulcast is both an alternative and complementary to Scalable Encoding
- > The trade-offs when it comes to efficiency are different
 - -SVC encoding is more efficient in sender to mixer path
 - -Simulcast is more efficient in mixer to receiver path
 - -Combining scalable encoding with simulcast for best of both worlds
- > Simulcast is codec agnostic
- > Simulcast can be done for other purposes
 - -Provide two different encodings for interoperability
 - -Provide redundancy for robustness

Multiple Streams

A sample client, both sending and receiving multiple video streams

Multi-Stream Layering

- > An RTP Session can contain 1..N SSRCs
- An RTP Session is identified by a lower layer identifier, such as a UDP port or five tuples
- > A multimedia session contains one or more RTP sessions

Multi-Stream Simulcast Layering

- > A single source can be simulcasted as different versions
 - Same actual source in several sessions;
 don't want to force new semantics into SSRC value
- > Several sources can be rendered at the same device

draft-westerlund-avtcore-multistream-and-simulcast-00 | IETF 81 | 2011-07-14 | Page 9

Multi-Stream Issues

- > More advanced use cases than point to point VoIP:
 - -Video conferencing
 - -Telepresence
 - -IPTV
 - -Etc.
- > This can result in multiple media streams
 - Is the end-point capable of handling multiple simultaneous media streams of the same media type?
 - > Legacy capabilities is likely one SSRC per direction
 - When should additional media streams be in the same RTP session, when in a new session?
 - When streams have relations, how to express that for:
 - > Retransmission
 - > Redundancy
 - > Simulcast

Bandwidth Signaling

> Current SDP Bandwidth signaling insufficient in handling:

- -Asymmetric bandwidth capabilities in the path
- -Asymmetric bandwidth usage inherent from application
- -When different Payload Types have different bandwidth ranges
- When multi-stream applications use multiple streams in each direction
- -The allowed burstiness of media sources is not explicit

Codec Control / Optimization

draft-westerlund-avtcore-multistream-and-sinulost-00 EleTJaust1as4 valid for scalable coding!

Problem Summary

- > We have a general RTP architecture clarity issue
 - We need to clarify multiple SSRCs in one RTP session
 - We need to discuss when appropriate to use multiple RTP sessions
 - We need to create common principles for streams that aren't independent, but have common source.
- > We need to do this for all reasonable topologies
- Multiple SSRCs in an RTP session appear to need signaling support to avoid legacy issues
- Simulcast is good tool, we need signaling and RTP association mechanisms to make it work
- Bandwidth configuration and capability declaration in asymmetric usages and encodings needs to be improved
- Scalable Codecs and Simulcast needs additional Codec Control tools to optimize sessions

Proposed Extensions (1/4)

- > Multiple Streams Signaling
 - -Separated directions
 - > a=max-send-ssrc:96 2
 - > a=max-recv-ssrc:96 5
 - -Both payload specific and payload agnostic
 - > a=max-recv-ssrc:98 6
 - > a=max-recv-ssrc:99 4
 - > a=max-recv-ssrc:* 8

Proposed Extensions (2/4)

> Bandwidth Signaling

-b= line not possible to extend with sufficient new semantics

-Per direction and payload type (also payload agnostic)

-Per source

- > a=bw:recv pt=96 SMT:tb=64000:320
- > a=bw:recv pt=97 SMT:tb=12200:128

-Entire media level aggregate

> a=bw:send pt=* AMT:tb=384000:512

-Allow for future needed semantics to be defined

Proposed Extensions (3/4)

- > Simulcast Grouping in SDP
 - -Different semantics between directions
 - -a=group:SCS 1 2 3 ... (SimulCast Send intention)
 - -a=group:SCR 4 5 … (SimulCast Receive capability / acknowledge)
- Simulcast Source Identification in RTP
 - -SDES CNAME is defined as unique per endpoint, not per source
 - -New SDES SRCNAME unique per actual media source
 - > Indicate which streams are alternative encodings to each other

Proposed Extensions (4/4)

> Codec Control extensions is forthcomming

Anticipated Document Split

Proposal for Going Forward

- > That AVTCORE takes on the general Architecture questions:
 - Make it clear when appropriate to use multiple streams within an RTP session
 - How should one use RTP sessions and SSRCs when having alternative, complementary or redundant streams
- That the various extensions are submitted to the appropriate WG as individual pieces for progressing:
 - AVTCORE:
 - > Architecture
 - > Multi-stream Signaling
 - AVTEXT:
 - > Simulcast Group Signaling
 - > Codec Control
 - MMUSIC:
 - > Bandwidth Signaling

ERICSSON