Key Management for Pairwise Routing Protocol

draft-mahesh-karp-kmprp-00

Mahesh Jethanandani, Brian Weis, Keyur Patel IETF 81, July 2011, Quebec City, Canada

Motivation

- Key Management limited to static configuration of Master Keys in individual Routers
- No way to automatically exchange key material related information between pairwise network devices that has routing protocol adjacencies setup
- Need for an automated exchange of key material is articulated in draft-ietf-karp-routing-tcp-analysis-00

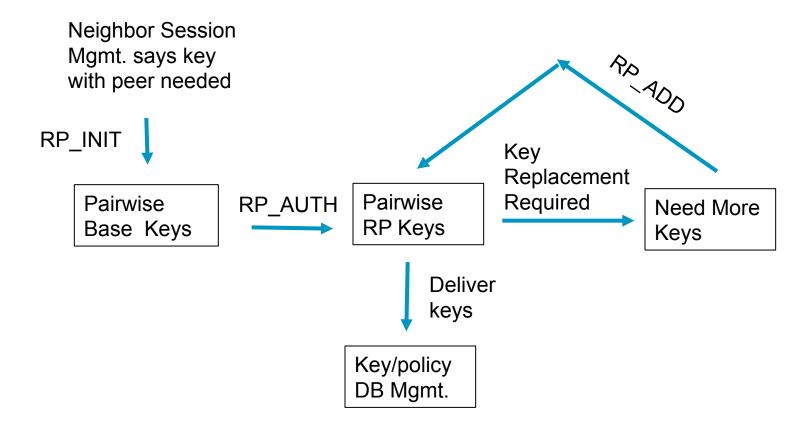
Key Management of Pairwise Routing Protocol (KMPRP)

- Used to automatically exchange private key material related information between two network devices forming a TCP based/point-to-point routing protocol adjacency
- Uses IKEv2 like protocol exchanges, state machine and policy definitions
- Defines a new dedicated UDP port for IKEv2 exchanges to distinguish from IPsec's usage

KMPRP Protocol Exchanges

RP_INIT

- Similar to IKE_SA_INIT exchange
- Used to create a private channel for subsequent protocol exchanges
- Two message exchange that allows devices to negotiate cryptographic algorithms, exchange nonces, and do a Diffie-Hellman (DH) for routing protocols
- Two devices can communicate privately about their key related information upon successful RP_INIT exchange


RP_AUTH

- Similar to IKE_AUTH exchange except that the policy payload contains policy specific to routing protocol security policy
- Initiator proposes one or more sets of security policy
- Responder responds with one security policy it accepts
- Upon a successful completion Initiator and Responder have negotiated and settled upon a single policy
- A common key is derived from the Diffie-Hellman (DH) key material

KMPRP Protocol Exchanges

- RP_ADD
 - Similar to IKEv2 CREATE_CHILD exchange
 - Used to do a re-key or to negotiate key material information for new protocol
 - Routing protocol security association (SA) payloads are identical to RP_AUTH exchange
- Information message
 - Useful for deleting specific SA and/or sending status information

KMPRP State Machine

KMPRP SA Payload

- SA payload contains one or more proposals and transforms
- Proposal Substructure covers the following
 - Protocol id of protocols under negotiation
 - TCP AO
 - LDP Discovery Key
 - KMPRP
 - Routing protocol id under negotiation
 - BGP
 - LDP
 - MSDP
 - PCEP
 - Number of transforms and transform substructures

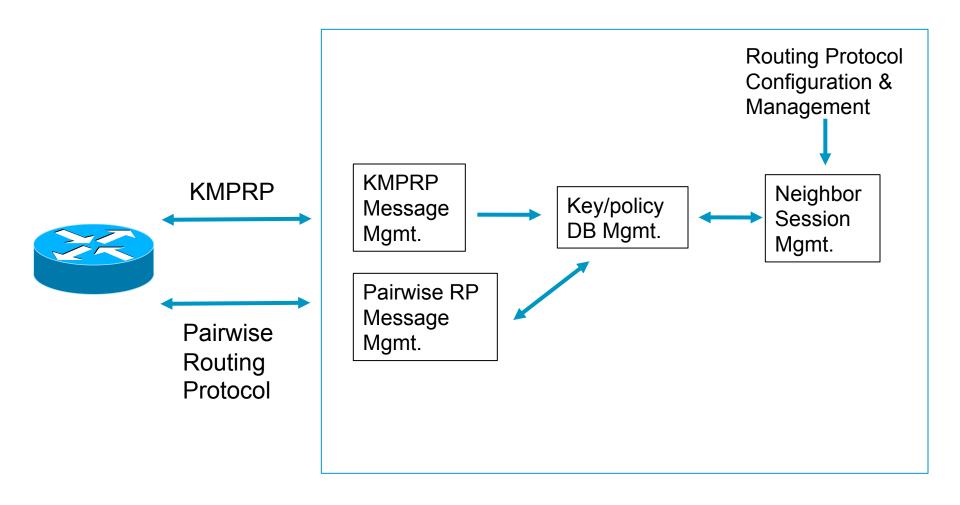
KMPRP SA Payload

Transforms

- Describes particular set of cryptographic policy choices
- Used to announce multiple sets of such policies
- TCP AO transform covers
 - SendID TCP-AO KeyID
 - Authentication Algorithm HMAC-SHA-1-96, AES
 - Key Derivation function (KDF) HMAC-SHA-1-96, AES
 - Flags to indicate TCP options for TCP AO

KMPRP Operation

- Routing protocol initiates point to point KMPRP neighbor session as part of
 - Neighbor adjacency configuration changes
 - local rekey policy decision
- A local entry is created in KMPRP database (KMDB) that consists of the following
 - Security Algorithm
 - Key specific information
 - Routing protocol client
 - Routing protocol neighbor
- Upon a successful KMPRP neighbor session creation, RP_INIT and RP_AUTH exchanges are done
 - Key material information is exchanged as part of RP_AUTH exchange
- KMPRP neighbor session is disconnected post the key material information exchange


KMPRP Key Management Data Base (KMDB)

- KMDB stores
 - Entries locally created by Client Routing Protocols
 - Key related information received from KMPRP sessions
- Notifies client routing protocols about key related information updates
- Initiates sessions with KMPRP neighbors whenever a local key related information is changed

KMPRP & Routing Protocol interactions

- Routing protocols interacts with KMPRP using KMDB
- Routing protocols could end up with multiple keys with KMPRP
- Key rollover is outside the scope of this document
 - TCP AO has already defined its own key rollover mechanism
 - Implementations should store old keys for certain period of time so as to handle out-of-order packets correctly

KMPRP Operation

Questions?