
Guidance for Light-Weight
Implementations of the Internet

Protocol Suite

Carsten Bormann, Ed.
Contributors:

Olaf Bergmann
Tero Kivinen

Carl Williams
Mitsuru Kanda

Outline

• Background

• Drawing the landscape

• Document structure

• Techniques

– 6LoWPAN

– CoAP

– API

– PANA

Background

• What we have
– Protocol specs: 6LoWPAN, 6LoWPAN_ND, RPL, CoAP…

• What are in need
– Techniques to implement these optimized protocols

– Guidance to make the implementation small and interoperable

• Objectives :
– Collect experiences from implementers of IP stacks on constrained

devices

– Knowledge of the art of the literature, helpful for future practice

– Conformance with the relevant specs

– Not software engineering best practices

Classes of “Constrained” Devices

• Distinguish 2 rough classes of constrained nodes:

• In each case, make clear which class is being targeted

• (These are a starting point for making sure we
discuss from the same requirements, not exact
classes.)

Data Size Code Size

Class 1 ~10 KB ~ 100 KB

Class 2 ~50 KB ~ 250 KB

Implementation styles

• Single-threaded/giant mainloop

• Event-driven vs. threaded/blocking

• Single/multiple processing elements

– E.g., separate radio/network processor

• In mind:

– Some techniques may be applicable only to some
of these styles!

Roles of nodes

• Constrained nodes

– Sleepy nodes

• Nodes talking to constrained nodes

– To sleepy nodes

– Normally always alive

• Gateways/Proxies

– To sleepy nodes

– Could be always alive

Document Overview

• Data Plane

– 6LoWPAN

– CoAP

• Control Plane

– RPL

• Security

– PANA

6LoWPAN Route-Over Fragment Forwarding

Contributor: Carsten Bormann
Universität Bremen TZI

cabo@tzi.org

6LoWPAN Implementation Tricks:
Fragment Forwarding Technique

• 6LoWPAN:
adaptation layer fragmentation can be needed

• Route-Over happens above adaptation layer

• Would have to reassemble at each hop

• Better:
– Build cache entry on initial fragment

– Forward initial fragment immediately

– Forward each non-initial fragment
based on cached IP header info

Constrained Application Protocol (CoAP)

Contributor : Olaf Bergmann
Universität Bremen TZI

bergmann@tzi.org

Trivia

 Why CoAP matters:

 M2M communication in constrained networks

 connect smart objects to the Internet

 Goal: HTTP equivalent for WSNs (REST)

 Focus

 Class 1 devices: ~10 KiB RAM, ~100 KiB Flash

 Server applications

 Robustness/latency vs. resources
(power, dynamic memory needs, static code size)

 Keep mandatory (to recognize) protocol features

Message Layer Processing

 Avoid fragmentation, retransmission

 minimize state maintenance and power usage
(especially server side)

 Must have send buffer and tick counter (or
RTC)

 To generate separate responses, servers must
keep client's transport address and Token

 Sleepy nodes

 fix up clock if interrupts are disabled during sleep

 No sleep for the first 1 or 2 retransmission cycles

Message Parsing

 The usual parsing strategies

 Propose bit-vector for type-decoding

 Some options are allowed more than once (Uri-
Path):

 Could make last segment unique
or collect while you parse

(How to) Proceed From Here?

 Feedback from mailing list

 Clarify which roles are talked about

 Analyze implementation cost for server and client

 Hard-coded parameters (e.g. max. payload size?)

 What about gateways and proxies?

 Security implementation?

 Proposal: should be covered in the general security section

 Other documents

 draft-arkko-core-sleepy-sensors

 Is this the right information to put in this document?

General considerations about
Application Programming Interfaces

(APIs)

Author: Carl Williams

API

• One of the roles of the API can be exactly to hide the detail of
the transport protocol

• uIP application interface
– Event driven API model

– Standard multi-threaded model not used

• TinyOS
– Non-blocking API

• When application interface sends a message the routine would return
immediately (before msg is sent)

• Call-back facility notifies app when sending is done.

• Benefit: no code runs for long periods of time; otherwise, pkt is dropped.

Work in Progress

• Gathering implementation experiences from
IPSO developers

– Attendance of IPSO late March

– Work with API implementers in IPSO alliance

Guidance for Lightweight
Security Protocol

Author: Mitsuru Kanda

Presenter: Yoshihiro Ohba

• Protocol for Carrying Authentication for Network Access
defined between PaC (PANA Client) and PAA (PANA
Authentication Agent)

• PaC may be sleeping
– Use PaC-initiated session

• Sleeping device can’t process an unsolicited PAA-initiated session
message

– PANA ‘Ping’

• Do not use PANA ‘Ping’ for mutual liveness check

– Use PaC Initiated re-authentication

• Sleeping device can’t process an unsolicited PAA-initiated re-
authentication message

• PANA message optimization (reduce number of messages)
– Use Piggybacking EAP technique

– Don’t send a PTR message for PANA session lifetime expiration

Minimal PANA Implementation

Next step

• Integrate more organized text on security and
other parts

• Circulate a Questionnaire for implementers to
collect information

