Guidance for Light-Weight
Implementations of the Internet
Protocol Suite

Carsten Bormann, Ed.
Contributors:

Olaf Bergmann

Tero Kivinen

Carl Williams

Mitsuru Kanda

Outline

Background
Drawing the landscape
Document structure

Techniques
— 6LOWPAN
— CoAP
— API
— PANA

Background

* What we have
— Protocol specs: 6LoWPAN, 6LoWPAN_ND, RPL, CoAP...

e What are in need

— Techniques to implement these optimized protocols
— Guidance to make the implementation small and interoperable

* Objectives:

— Collect experiences from implementers of IP stacks on constrained
devices

— Knowledge of the art of the literature, helpful for future practice
— Conformance with the relevant specs
— Not software engineering best practices

ljhilllh,.llluﬁllllmmﬂ])

\

{© Original Artist

Reproduction rights obtainable from
www. CartoonStock.com N
‘ " =
N\
S——

M Baloo

"T program, therefore I am...."

Y A1 -'.-l'f':f l.{,u.'.v.r.-".-"r.":'r"l-\"l"!:'::l:l:; K o

x
. e e 1. .. AT
oy O i el e v il g fr;{v_.-{f

Classes of “Constrained” Devices

Distinguish 2 rough classes of constrained nodes:

Data Size Code Size
Class 1 ~10 KB ~ 100 KB
Class 2 ~50 KB ~ 250 KB

In each case, make clear which class is being targeted

(These are a starting point for making sure we
discuss from the same requirements, not exact
classes.)

Implementation styles

Single-threaded/giant mainloop
Event-driven vs. threaded/blocking
Single/multiple processing elements

— E.g., separate radio/network processor

In mind:

— Some techniques may be applicable only to some
of these styles!

Roles of nodes

e Constrained nodes

— Sleepy nodes

* Nodes talking to constrained nodes
— To sleepy nodes
— Normally always alive

* Gateways/Proxies

— To sleepy nodes
— Could be always alive

Document Overview

e Data Plane
— 6LOWPAN
— CoAP

e Control Plane
— RPL

* Security
— PANA

6LoWPAN Route-Over Fragment Forwarding

Contributor: Carsten Bormann
Universitat Bremen TZI

cabo@tzi.org

6LoWPAN Implementation Tricks:

Fragment Forwarding Technique

6LoWPAN:
adaptation layer fragmentation can be needed

Route-Over happens above adaptation layer
Would have to reassemble at each hop

Better:

— Build cache entry on initial fragment
— Forward initial fragment immediately

— Forward each non-initial fragment
based on cached IP header info

Constrained Application Protocol (CoAP)

Contributor : Olaf Bergmann
Universitat Bremen TZ|
bergmann@tzi.org

Trivia

o Why CoAP matters:

« M2M communication in constrained networks
« connect smart objects to the Internet
« Goal: HTTP equivalent for WSNs (REST)

o Focus
o Class 1 devices: ~10 KiB RAM, ~100 KiB Flash

« Server applications

« Robustness/latency vs. resources
(power, dynamic memory needs, static code size)

. Keep mandatory (to recognize) protocol features

Message Layer Processing

Avoid fragmentation, retransmission

« Minimize state maintenance and power usage
(especially server side)

Must have send buffer and tick counter (or
RTC)

To generate separate responses, servers must
keep client's transport address and Token

Sleepy nodes

o fix up clock if interrupts are disabled during sleep
« No sleep for the first 1 or 2 retransmission cycles

Message Parsing

« The usual parsing strategies
« Propose bit-vector for type-decoding

« Some options are allowed more than once (Uri-
Path):

« Could make last segment unique
or collect while you parse

(How to) Proceed From Here?

Feedback from mailing list

« Clarify which roles are talked about
« Analyze implementation cost for server and client
. Hard-coded parameters (e.g. max. payload size?)
. What about gateways and proxies?

Security implementation?

. Proposal: should be covered in the general security section
Other documents

. draft-arkko-core-sleepy-sensors

Is this the right information to put in this document?

General considerations about
Application Programming Interfaces
(APIs)

API

* One of the roles of the APl can be exactly to hide the detail of
the transport protocol

e ulP application interface

— Event driven APl model

— Standard multi-threaded model not used
* TinyOS

— Non-blocking API

 When application interface sends a message the routine would return
immediately (before msg is sent)

» Call-back facility notifies app when sending is done.
* Benefit: no code runs for long periods of time; otherwise, pkt is dropped.

Work in Progress

e Gathering implementation experiences from
IPSO developers

— Attendance of IPSO late March
— Work with APl implementers in IPSO alliance

Guidance for Lightweight
Security Protocol

Author: Mitsuru Kanda
Presenter: Yoshihiro Ohba

Minimal PANA Implementation

* Protocol for Carrying Authentication for Network Access
defined between PaC (PANA Client) and PAA (PANA

Authentication Agent)

* PaC may be sleeping

— Use PaC-initiated session
» Sleeping device can’t process an unsolicited PAA-initiated session

message
— PANA ‘Ping’
* Do not use PANA ‘Ping’ for mutual liveness check

— Use PaC Initiated re-authentication
» Sleeping device can’t process an unsolicited PAA-initiated re-

authentication message

* PANA message optimization (reduce number of messages)

— Use Piggybacking EAP technique
— Don’t send a PTR message for PANA session lifetime expiration

Next step

* |ntegrate more organized text on security and
other parts

* Circulate a Questionnaire for implementers to
collect information

