
Guidance for Light-Weight
Implementations of the Internet

Protocol Suite

Carsten Bormann, Ed.
Contributors:

Olaf Bergmann
Tero Kivinen

Carl Williams
Mitsuru Kanda

Outline

• Background

• Drawing the landscape

• Document structure

• Techniques

– 6LoWPAN

– CoAP

– API

– PANA

Background

• What we have
– Protocol specs: 6LoWPAN, 6LoWPAN_ND, RPL, CoAP…

• What are in need
– Techniques to implement these optimized protocols

– Guidance to make the implementation small and interoperable

• Objectives :
– Collect experiences from implementers of IP stacks on constrained

devices

– Knowledge of the art of the literature, helpful for future practice

– Conformance with the relevant specs

– Not software engineering best practices

Classes of “Constrained” Devices

• Distinguish 2 rough classes of constrained nodes:

• In each case, make clear which class is being targeted

• (These are a starting point for making sure we
discuss from the same requirements, not exact
classes.)

Data Size Code Size

Class 1 ~10 KB ~ 100 KB

Class 2 ~50 KB ~ 250 KB

Implementation styles

• Single-threaded/giant mainloop

• Event-driven vs. threaded/blocking

• Single/multiple processing elements

– E.g., separate radio/network processor

• In mind:

– Some techniques may be applicable only to some
of these styles!

Roles of nodes

• Constrained nodes

– Sleepy nodes

• Nodes talking to constrained nodes

– To sleepy nodes

– Normally always alive

• Gateways/Proxies

– To sleepy nodes

– Could be always alive

Document Overview

• Data Plane

– 6LoWPAN

– CoAP

• Control Plane

– RPL

• Security

– PANA

6LoWPAN Route-Over Fragment Forwarding

Contributor: Carsten Bormann
Universität Bremen TZI

cabo@tzi.org

6LoWPAN Implementation Tricks:
Fragment Forwarding Technique

• 6LoWPAN:
adaptation layer fragmentation can be needed

• Route-Over happens above adaptation layer

• Would have to reassemble at each hop

• Better:
– Build cache entry on initial fragment

– Forward initial fragment immediately

– Forward each non-initial fragment
based on cached IP header info

Constrained Application Protocol (CoAP)

Contributor : Olaf Bergmann
Universität Bremen TZI

bergmann@tzi.org

Trivia

 Why CoAP matters:

 M2M communication in constrained networks

 connect smart objects to the Internet

 Goal: HTTP equivalent for WSNs (REST)

 Focus

 Class 1 devices: ~10 KiB RAM, ~100 KiB Flash

 Server applications

 Robustness/latency vs. resources
(power, dynamic memory needs, static code size)

 Keep mandatory (to recognize) protocol features

Message Layer Processing

 Avoid fragmentation, retransmission

 minimize state maintenance and power usage
(especially server side)

 Must have send buffer and tick counter (or
RTC)

 To generate separate responses, servers must
keep client's transport address and Token

 Sleepy nodes

 fix up clock if interrupts are disabled during sleep

 No sleep for the first 1 or 2 retransmission cycles

Message Parsing

 The usual parsing strategies

 Propose bit-vector for type-decoding

 Some options are allowed more than once (Uri-
Path):

 Could make last segment unique
or collect while you parse

(How to) Proceed From Here?

 Feedback from mailing list

 Clarify which roles are talked about

 Analyze implementation cost for server and client

 Hard-coded parameters (e.g. max. payload size?)

 What about gateways and proxies?

 Security implementation?

 Proposal: should be covered in the general security section

 Other documents

 draft-arkko-core-sleepy-sensors

 Is this the right information to put in this document?

General considerations about
Application Programming Interfaces

(APIs)

Author: Carl Williams

API

• One of the roles of the API can be exactly to hide the detail of
the transport protocol

• uIP application interface
– Event driven API model

– Standard multi-threaded model not used

• TinyOS
– Non-blocking API

• When application interface sends a message the routine would return
immediately (before msg is sent)

• Call-back facility notifies app when sending is done.

• Benefit: no code runs for long periods of time; otherwise, pkt is dropped.

Work in Progress

• Gathering implementation experiences from
IPSO developers

– Attendance of IPSO late March

– Work with API implementers in IPSO alliance

Guidance for Lightweight
Security Protocol

Author: Mitsuru Kanda

Presenter: Yoshihiro Ohba

• Protocol for Carrying Authentication for Network Access
defined between PaC (PANA Client) and PAA (PANA
Authentication Agent)

• PaC may be sleeping
– Use PaC-initiated session

• Sleeping device can’t process an unsolicited PAA-initiated session
message

– PANA ‘Ping’

• Do not use PANA ‘Ping’ for mutual liveness check

– Use PaC Initiated re-authentication

• Sleeping device can’t process an unsolicited PAA-initiated re-
authentication message

• PANA message optimization (reduce number of messages)
– Use Piggybacking EAP technique

– Don’t send a PTR message for PANA session lifetime expiration

Minimal PANA Implementation

Next step

• Integrate more organized text on security and
other parts

• Circulate a Questionnaire for implementers to
collect information

