
1 

Mike Eisler 

mre dash ietf at eisler dot com 

 

July 27, 2011 

I/O Hints Discussion 

 

IETF 81 

1 



2 

Overview 

 draft-eisler-nfsv4-enterprise-apps-01 

 Proposes an IO_ADVISE operation 

– Similar to fadvise() 

 Also proposes new READ_WITH_ADVICE 

and WRITE_WITH_ADVICE operations 

 Several controversies 



3 

Controversies 

 Overlaps with draft-hildebrand-nfsv4-fadvise-

02.txt 

 Need to provide stronger justification/use case 

for  

– IO_ADVISE4_PREFETCH_OPPORTUNISTIC 

– IO_ADVISE4_RECENTLY_USED 

 The need for READ_WITH_ADVICE and 

WRITE_WITH_ADVICE 



4 

Overlaps with draft-hildebrand-nfsv4-

fadvise-02.txt 
 Proposed merged list: 

– IO_ADVISE4_NORMAL - as in FADVICE i-d 

– IO_ADVISE4_SEQUENTIAL - as in FADVICE i-d 

– IO_ADVISE4_RANDOM - as in FADVICE i-d 

– IO_ADVISE4_WILLNEED_TO_READ - same as FADVISE_WILLNEED 
and IO_ADVISE4_PREFETCH.  

– IO_ADVISE4_DONTNEED - as in FADVICE i-d 

– IO_ADVISE4_NOREUSE - as in FADVICE i-d 

– IO_ADVISE4_MIGHTNEED_TO_READ – same as 
IO_ADVISE4_PREFETCH_OPPORTUNISTIC  

– IO_ADVISE4_WILLNEED_TO_WRITE - same as 
IO_ADVISE4_INTENT_TO_WRITE 

– IO_ADVISE4_RECENTLY_USED - as in enterprise apps i-d  

 To get the IO_ADVISE4_SEQUENTIAL_CACHE behavior, include both 
IO_ADVISE4_SEQUENTIAL and IO_ADVISE4_WILLNEED_TO_READ 
in the IO_ADVISE operation. 

 To get the IO_ADVISE4_SEQUENTIAL_DONTCACHE behavior, 
include both IO_ADVISE4_SEQUENTIAL and IO_ADVISE4_NOREUSE 
in the IO_ADVISE operation.   

 



5 

Justification for 

IO_ADVISE4_PREFETCH_OPPORTUNISTIC  

 Sometimes one is certain a prefetch is needed (e.g. 

sequential reads), and other times one speculates it is 

needed 

 IO_ADVISE4_PREFETCH is for the certain case 

 IO_ADVISE4_PREFETCH_OPPORTUNISTIC is for 

the speculative case where it costs the server little to 

perform 

– E.g. an application reads data that contains a reference 

to data in another block (possibly in another file, 

possibly in another server) 

 A server that is lean on free/cold cache space might 

prefetch block pointers instead of the block itself 

 



6 

Justification for 
IO_ADVISE4_RECENTLY_USED 

 Data can go cold in the server’s cache while it 

stays warm in the client’s cache 

 In order to meet service level objectives 

including in the face of client restart, the 

server needs to know which data is warm 

 Data that gets LRUed out of server’s primary 

cache (e.g. DRAM) can placed in seconday 

cache (e.g. flash memory)  



7 

The need for READ_WITH_ADVICE and 

WRITE_WITH_ADVICE 

 The objective was to handle the case where the client 
is indicating advice that applies to just one I/O 
operation and leaves the IO_ADVISE hint intact 

 E.g. Overall the file has a random workload, but the 
client knows when it reads a particular block that the 
block will be immediately written (e.g. database 
record update) 
– So server need not cache the block 

– And if the server’s file system is log based, this provides 
advance notice to find free space 

 This class of use cases can be handled by doing (for 
example) 
IO_ADVISE IO_ADVISE4_WILLNEED_TO_WRITE ; 

READ ; IO_ADVISE previous_hint 

– But this leads to some other issues … 

 



8 

New Issues 

 How many hints does a server support per 

open-owner/file pair 

– Very relevant to whether proposal drops 

READ/WRITE_WITH_ADVICE 

– Client should know how many 



9 

New Issues (continued) 

– Proposal 1: IO_ADVISE response to include count of 
number of hints the server has on the file 

 E.g., a client requests two hints on two non-overlapping 
byte ranges 

– The second IO_ADVISE response indicates just one hint (the 
last hint) is in effect 

– If there a maximum of one hint, then since NORMAL is also a 
hint, then this means that despite the byte range, the hint 
always applies to the entire file 

 If the server supports between 2 and 2^64 hints then the 
specification needs to define which of the remaining hints 
apply to orphaned byte ranges 

– Hint with nearest offset? 

– Least recently sent hint? 

– Most recently sent hint? 

– … 



10 

New Issues (continued) 

– Proposal 2: Drop byte range from IO_ADVISE 

arguments 

 Unambiguously dictates that the protocol 

supports exactly one hint per open-owner/open 

file pair 

 Much simpler, if limiting 

– LAYOUTCOMMIT provides a lesson here 

 Clashes with POSIX standard for fadvise, but 

does anyone implement multiple byte ranges? 



11 

New Issues (continued) 

 pNFS issue: should IO_ADVISE be allowed on requests to data 
server (DSes) 

– Very relevant to whether proposal drops 
READ/WRITE_WITH_ADVICE 

– In order to satisfy per I/O hint use case, protocol must allow 
this possibility 

– Then what does it mean to send IO_ADVISE to both MDS 
and DS? 

– This is analogous to COMMIT: MDS decides whether pNFS 
client can COMMIT to DS. 

– Proposal is to solve it the same way 

– New flag NFL4_UFLG_IO_ADVISE_THRU_MDS in the field 
nfl_util of the file layout  

 if set, IO_ADVISE MUST NOT be sent to DS 

 if not set,  
– IO_ADVISE MAY be sent to DS but will not impact other DSes 

– Hint will not outlive the layout 



12 

Proposal for Moving forward 

 Since READ/WRITE_WITH_ADVISE are 

contentious, drop those operations and 

address multiple hint and pNFS issues 

 Combine the two I-Ds (just the hint stuff from 

the enterprise apps I-D), using merged hint list 

presented earlier 

 New operation is called IO_ADVICE since it 

supports both POSIX fadvise and non-fadvise 

requirements 

 Incorporate into NFSv4.2 



13 13 



14 14 


