T-LDP Hello Reduction

draft-pdutta-mpls-tldp-hello-reduce-02

Pranjal Dutta
Thomas Nadeau
Giles Heron

25 July 2011

History

- 00-version was presented in IETF-74 in MPLS
 WG
- Addressed all feedbacks received from WG in revision -02.
- Moved from Informational to Standards Track as per suggestions from MPLS WG.

Objectives

• Optimize Targeted LDP (T-LDP) session maintenance in scaled T-LDP environment (e.g in mobilility backhauls with Pseudowires/VPLS deployments).

Problem Statement

• After LDP session establishment T-LDP hellos become redundant. Session Keepalives are sufficient to maintain T-LDP adjacency.

• In scaled T-LDP environment, T-LDP Hellos are overheads after the session establishment if BFD etc. are used for tracking neighbor liveliness.

Problem Statement

 LDP Hellos can cause DoS attacks leading to losing of established adjacencies. It is important to avoid dependency of hellos as far as possible.

Procedure

- Two T-LDP peering LSRs starts exchanging T-LDP hellos with "configured" hello timeouts as part of extended discovery.
- After LDP session is established, each LSR starts sending Hello Timeout of value 0xFFFF, which is infinite as per RFC 5036.
- If both peering LSRs start advertising Hello Timeout of 0xFFFF, then negotiated timeout falls back to 0xFFFF.

Procedure

• After the LDP session fails, both LSRs start transmitting T-LDP Hellos with the "configured" timeout values again.

Benefits

• Procedure is very simple and uses existing provisions of RFC 5036. Backward compatible with LSRs not implementing the procedure.

Next Steps

• Discussions, feedbacks in PWE3 + MPLS mailing list.

 Reach working group consensus on the T-LDP hello reduction mechanism