RTP Requirements for RTC-Web

Colin Perkins – University of Glasgow
Magnus Westerlund – Ericsson
Jörg Ott – Aalto University
Outline

• Purpose of the draft
• Assumptions and topologies
• Requirements RTP places on RTC-Web
• Recommendations
 • Choice of RTP profile
 • RTP optimisations
 • RTP extensions
 • Improving transport robustness
 • Rate adaptation
Purpose of the Draft

• General agreement that RTP appropriate for media transfer in RTC-Web

• How do RTP and RTC-Web interact?
 • What requirements does RTP impose on the RTC-Web solution?
 • How can the RTC-Web use of RTP be compatible with other uses of RTP, and with the basic operation of the RTP protocol?

• What is an appropriate set of RTP features and extensions for the RTC-Web solution?
 • For compatibility with other uses of RTP
 • To provide a solid base on which to build high-performance, flexible, and robust RTC-Web implementations
Assumptions and Topologies

- Transport flows are established and kept alive by other parts of the RTC-Web solution
- Some signalling solution exists to negotiate and configure media transport

- Media flows are configured to a subset of the topologies supported by RTP
 - Peer-to-peer
 - Multi-unicast or full mesh
 - Centralised mixer
 - Relay or transport translator
 - These are explicitly group communication scenarios, even though they use unicast connection
 - An application cannot determine the number of participants from the nature of the transport connections (it may be able to do so from the signalling)
Requirements from RTP

• The RTP protocol imposes some requirements on the RTC-Web solution:
 • RTP sessions and multiplexing points
 • RTCP
 • Signalling Requirements for RTP Sessions
 • (Lack of) Signalling for Payload Format Changes
Sessions and Multiplexing Points

• RTP defines three multiplexing points:
 • RTP session – used for a specific purpose and type of media
 • E.g., audio for all game participants; video of anyone speaking in a lecture; video of a product being demonstrated – audio and video run on different RTP sessions
 • Defined by a common SSRC space, and can be distributed over several transport layer flows/connections
 • Transport addresses/ports separate RTP sessions, but don’t define the session
 • E.g., a four participant full mesh teleconference, that comprises six peer-to-peer transport connections, will comprise one RTP session
 • Media flows – identified by SSRC within session
 • The RTCP CNAME indicates if from the same or different participants
 • Payload type – allows switching between different codecs of the same sort (e.g., between two audio codecs) at different times

• Important not to conflate these multiplexing points
 • In particular, trying to use the SSRC to separate different RTP sessions running on the same transport address is problematic
RTCP

- RTCP is an integral part of RTP – it is *not* optional
 - To identify participants within an RTP session
 - To ensure that other participants know of receiver-only SSRCs
 - To learn the media quality performance to other participants
 - To synchronise media streams (for lip-sync or other reasons)
 - To enable transport related media adaptation and control
 - To improve performance of media switching middleboxes for group conferencing scenarios
Signalling Requirements

• RTP requires a number of parameters to be signalled before a session can be created:
 • Addresses and port for transport-layer flows to be used
 • RTP profile to be used
 • RTP payload types and their media encoding parameters
 • RTP extensions to be used

• Note that RTP does not require signalling before change in payload type during a session
 • Can switch between any of the negotiated payload types at any time
 • Important to allow adaptation to network conditions
Recommendation for RTP Profile

• Require support for RTP/SAVPF profile only:
 • Secured media is going to be required → the SAVP part
 • Using null crypto may be simpler than negotiating profile!
 • Feedback is essential → AVPF part
 • Greatly improved timeliness in RTCP behaviour
 • Reduces bit-rate consumption when there are no RTCP events to be sent
 • Conferencing extensions greatly improve performance of centralised conferencing
 • Rapid feedback provides improved robustness to packet loss
 • Transparent compatibility with RTP/AVP

• Negotiation of RTP profile is problematic: better to mandate a full-featured baseline, than to deal with signalling complexity
RTP Optimisations

- The draft proposes the following optimisations:
 - RTP and RTCP multiplexing – both flows on the same underlying transport flows
 - Reduced Size RTCP – allow feedback messages to be sent without redundant reception reports and SDES information
 - Symmetric RTP – allow bi-directional media on the same transport flow
 - RTCP CNAME generation – generate canonical name identifiers that work through NAT devices

- These generally simplify implementation compared to RFC 3550, although they increase specification complexity
RTP Extensions

- RTP conferencing extensions
 - Mixer selects or combines media streams
 - Needs RTCP feedback and control messages to improve performance and scalability
 - Full Intra Request
 - Picture Loss Indicator
 - TMMBR – also for rate adaptation

- RTP Header Extensions
 - RFC 5285 format required to support stacking and future extensibility
 - RFC 6051 rapid media synchronisation extensions recommended
 - If you want another header extension, please argue for it!
 - Client↔mixer audio level indications?
Improving RTP Transport Robustness

• Support for RTP/AVPF NACK and retransmission is recommended

• Support for FEC might be desirable, but unclear what to recommend
 • Many FEC schemes are encumbered
 • Range of options in use – no clear winner?
Rate Control and Media Adaptation

• RTC-Web will mainly be used on best effort Internet
 • Highly variable bottlenecks around the world
 • Must be able to adapt to available resources – else can starve yourself!
 • We do not mandate TCP-Friendly behaviour
 • Difficult to define, and inappropriate for many media flows
 • But, require to be self fair: two instances of an RTC-Web running over the same bottleneck will share fairly between each other

• No well established solution exist:
 • Fairly well developed draft for TFRC within RTP/UDP/IP
 • RTP running over DCCP with TFRC or TFRC-SP support?
 • DCCP over UDP as a baseline transport protocol? Complex but flexible

• Needs work!
Next Steps?

- Are these appropriate recommendations?
- Adopt this draft as a working group item?