OSPFv3 Auto-Config
IETF 82, Taipei

draft-acee-ospf-ospfv3-autoconfig-00.txt

Akee Lindem, Ericsson
Jari Arkko, Ericsson
Protocols for Home Networking

- ISP interface
 - IPv6 forwarding
 - DHCPv6 PD

- Guest segment
- Private segment
- Home automation segment
- WLAN segment

Home GW

R
Protocols for Home Networking

ISP interface
- IPv6 forwarding
- DHCPv6 PD

Guest segment

Home GW

Private segment

Home automation segment

WLAN segment

OSPF extensions for
- Defaults
- Router ID autoconfig

3
Protocols for Home Networking

ISP interface
- IPv6 forwarding
- DHCPv6 PD

Guest segment

Private segment

Prefix Allocation
- DHCPv6 PD++
- Or OSPFv3++
- Or ...

Home GW

OSPF extensions for
- Defaults
- Router ID autoconfig

WLAN segment

Home automation segment
History/Requirements

- Motivated by HOMENET Routing Requirement for auto-configuration.
- Similar to past work – e.g., expired draft draft-dimitri-zospf-00.txt draft.
- Differences
 - Decouples IPv6 prefix assignment (there are may be multiple ways of doing this)
 - Handles duplicate Router-ID resolution for all routers in OSPFv3 routing domain
 - Provides extendible framework for other types of auto-configuration information
OSPFv3 Defaults

- OSPFv3 uses IPv6 link-local addresses for all protocol exchanges (except on virtual links which is not applicable).
- Unique OSPFv3 Router ID Selected (to be covered)
- All IPv6 capable interfaces run OSPFv3 in Area 0:
 - Interface type corresponds to physical interface (usually broadcast corresponding to Ethernet)
 - Interface Instance ID set to known value to prevent inadvertent adjacencies with OSPFv3 routers that aren’t auto-configured.
 - Interface may be excluded from running OSPFv3 if it is know that it is not necessary (e.g., ISP interface)
OSPFv3 Router-ID

- Selection initially based on MAC address
- Router Hardware Fingerprint introduced for unique router identification
 - 32 octet minimum bit string uniquely identifying the router
 - Should contain MAC address(es) and other persistent identifiers (e.g., device serial number)
- Duplicate detection with neighbors dependent on protocol packet reception with same router-id but different router hardware fingerprint.
- Remote duplicate detection dependent on OSPFv3 Auto-Configuration (AC) LSA containing same router-id but different Router Hardware Fingerprint.
New Link-State Advertisement (LSA) type (TBD) used to advertise all types of OSPFv3 and potentially other auto-configuration information.

Uses same Type-Length-Value (TLV) format as the OSPFv3 Traffic Engineering (TE) LSAs.

Initially used for duplicate OSPFv3 Router-ID detection for OSPFv3 routers that are not directly connected.

Defined TLV will advertise the Router Hardware Fingerprint which will be used for duplicate Router-ID detection and resolution.