Proposed Documents for JOSE:

JSON Web Signature (JWS)
JSON Web Encryption (JWE)
JSON Web Key (JWK)

Mike Jones
Standards Architect — Microsoft
IETF 82 — November 14, 2011



Motivation

* Clear need for industry-standard JSON-based:
— Security Token format
— Signature format
— Encryption format
— Public Key format

e Specs written and in use filling these needs:
— JSON Web Token (JWT)
— JSON Web Signature (JWS)
— JSON Web Encryption (JWE)
— JSON Web Key (JWK)



Design Philosophy

* Make simple things simple
 Make complex things possible



Design Goals

* Easy to use in all modern web development
environments

 Compact, URL-safe representation



Background (1)

In October 2010, there were numerous proposed
JSON-based token and crypto formats:

— JSON Simple Sign and JSON Simple Encrypt

— Canvas Applications Signatures
— JSON Tokens

Clear that agreement would better serve all

Mike Jones surveyed features, design decisions
— Proposed consensus feature set

— based on discussions including Google, Facebook,
AOL, NRI, Microsoft, and independent contributors

Extensive review, discussions at IIW, Nov 2010
Consensus JWT draft published December 2010



Background (2)

JavaScript Message Security Format (JSMS) published
in March 2011 by Eric Rescorla & Joe Hildebrand

— JSON-based signing and encryption format
JWS published in March 2011 (split off from JWT)
OAuth JWT Bearer Token Profile published March 2011

At [ETF 80 (March 2011), JSMS and JWS authors agreed
to work together on unified specs

JWK published in April 2011

JWE published in September 2011
— Encryption features from JSMS using JWS-based syntax



Background (3)

e JWT, JWS, JWE, JWK updated October 2011

— Incorporating feedback from WOES/JOSE
members

* JWT, etc. specs already in use
— Google, Microsoft, others
— Deployments planned by numerous parties

* OpenlD Connect uses JWT, JWS, JWE, JWK

— At least 7 independent implementations



JSON Web Signature (JWS)

http://tools.ietf.org/html/draft-jones-json-web-
signature

Sign arbitrary content using compact JSON-based
representation
— Includes both true digital signatures and HMACs

Representation contains three parts:

— Header

— Payload

— Signature

Parts base64url encoded and concatenated,
separated by period (“.") characters

— URL-safe representation




JWS Header Example

e JWS Header:

— {"typ" . "JWT",
"alg":"HS256"}

— Specifies use of HMAC SHA-256 algorithm

— Also contains optional content type parameter
e Base6b4url encoded JWS Header:

— eyJ0eXA101JKVI1IQ1LAOKICJIhbGci101JIUZzIIN1J9



JWS Payload Example

* JWS Payload (before base64url encoding):
— { "j_SS" : "joe",
"exp":1300819380,
"http://example.com/is root":true}

e JWS Payload (after base64url encoding):

eyJpc3MiOiJqb2UiLAOKICJIleHAIOjEzZMDA4MTkzODASDQO
gImhOdHA6Ly91eGFtcGx1ImNvbS9pclO9yb290Ijp0cnV1EQ



JWS Signing Input

e Signature covers both Header and Payload

* Signing input concatenation of encoded
Header and Payload, separated by period
— Enables direct signing of output representation
* Example sighing input:

eyJ0eXA101JKV1IQiLAOKICIhbGci01JIUZzI1INi1iJ9.eyJdpc3
MiO1Jgb2UiLAOKICJ1eHA1iOJEzMDA4AMTkzODAsDQogImhOd
HA6Ly91eGFtcGx1LmNvbS9pcl9yb290I]Jp0cnV1EQ



JWS Signature

 Example baseb4url encoded HMAC SHA-256

value:
— dBjftJez4CVP-mB92K27uhbUJUlplr wiWlgFWFOE]Xk



JWS Header Parameters

"alg" —Signature Algorithm (REQUIRED)
"3ku" —JSON Web Key URL

"x5u" —X.509 Public Key URL

"x5t" — X.509 Certificate Thumbprint
"kid" — Key ldentifier

"typ" — Type for signed content



JWS Algorithm Identifiers

 Compact algorithm ("alg") identifiers:
— "HS256" —HMAC SHA-256
— "RS256" —RSA SHA-256
— "ES256" — ECDSA with P-256 curve and SHA-256

e Other hash sizes also defined:
— 384,512

* Other algorithms, identifiers MAY be used



JSON Web Encryption (JWE)

http://tools.ietf.org/html/draft-jones-json-web-
encryption

Encrypt arbitrary content using compact JSON-
based representation

Representation contains three parts:

— Header

— Encrypted Key
— Ciphertext

Parts base64url encoded and concatenated,
separated by period (“.”) characters

— URL-safe representation




JWE Header Example

e JWS Header:

— {"alg":"RSA1_5",
"enc":"A256GCM",
""" 79 Pve-fg",
"5t":"7noOPg-hJ1_hCnvWhe6leYI2w9Q0"}

— RSA-PKCS1 1.5 used to encrypt JWE Encrypted Key
— AES-256-GCM used to encrypt Plaintext

— Initialization Vector value specified

— X.509 Certificate Thumbprint specified

 Header base64url encoded just like JWS



JWE Header Parameters

"alg" — Encryption Algorithm for JWE Encrypted Key
(REQUIRED)

"enc" — Encryption Algorithm for Plaintext
(REQUIRED)

"iv" —Initialization Vector

"epk" — Ephemeral Public Key
"zip" — Compression algorithm
"Jku" —JSON Web Key URL

"x5u" - X.509 Public Key URL

"x5t" —X.509 Certificate Thumbprint
"kid" — Key ldentifier

"typ" — Type for encrypted content



JWE Key Encryption Alg Identifiers

* Algorithm ("alg") identifiers:
— "RSA1 5" —RSA using RSA-PKCS1-1.5 padding

— "RSA-OAEP" — RSA using Optimal Asymmetric
Encryption Padding (OAEP)

— "ECDH-ES" — Elliptic Curve Diffie-Hellman
Ephemeral Static

— "A128KW", "A256KW" — AES Key Wrap with 128,
256 bit keys

— "A128GCM", "A256GCM" — AES Galois/Counter
Mode (GCM) with 128, 256 bit keys

* Other algorithms, identifiers MAY be used



JWE Plaintext Encryption Alg Identifiers

e Algorithm ("enc") identifiers:

— "A128CBC", "A256CRBC" — AES Cipher Block
Chaining (CBC) mode with 128, 256 bit keys

— "A128GCM", "A256GCM" — AES Galois/Counter
Mode (GCM) with 128, 256 bit keys

e Other algorithms, identifiers MAY be used



JSON Web Key (JWK)

* http://tools.ietf.org/html/draft-jones-json-
web-key
* JSON representation of public keys

* Representation of private keys out of scope




JWK Example

{"keyvalues":
[
{"algorithm":"EC",
"curve":"P-250",
"x":"MKBCTNICKUSDiil11lySs3526iDZ8AiTo7Tu6KPAqQv7D4",
"y":"4ELt16SRW2Y1LUrNSvEvVHUhp7x8Px1tmWWlbbM4IFyM",

use" :"encryption",
"keyid" : "1" } ,

{"algorithm":"RSA",

"modulus": "Ovx7ag (omitted)Cur-kEgUB8awapJzKngDKgw",
"exponent" :"AQAB",

"keyid":"2011-04-29"}



Refactoring for JOSE

e JOSE charter specifies four deliverables:
— Signing
— Encryption
— Public Key Representation
— Algorithms Profile

* |f accepted by WG, would refactor JWS, JWE,
JWK to move algorithms into separate doc



Open Issues

* Do we also want pure JSON representations?

— Not base64url encoded so not URL-safe
— Would be usable in HTTP bodies, etc.

* Do we need additional header parameters?
— Public keys by value (rather than by reference)
— X.509 certs by value (rather than by reference)

* Do we specify representation combining
encryption and integrity operations?
— Would be more compact than nested operations
— Would likely result in four-part representation




Related Work

* W3C Web Cryptography Working Group
— http://www.w3.org/wiki/ldentityCharter
— Specifying JavaScript APls for cryptography
— JOSE specs should underlie this WG’s APIs




Next Steps

Decide whether to accept JWS, JWE, JWK as

JOSE working group documents

Determine coordination strategy with W3C
Web Cryptography WG

Refactor current documents per JOSE charter
Submit IETF -00 drafts



