
1 1

IETF 82

Cullen Jennings

2

•  Old W3C API had PeerConnection that emits messages like this:

“SDP\n
 v=0\n
 o=- 2890844526 2890842807 IN IP4 192.0.2.1\n
 s= \n
 c=IN IP4 192.0.2.1\n
 t=2873397496 2873404696\n
 m=audio 49170 RTP/AVP 0”

3

•  More on each of these fields later ….

•  {
“messageType”: “OFFER”,
"offererSessionId":"13456789ABCDEF",
“seq”: 1,
“sdp”:”v=0\n
 o=- 2890844526 2890842807 IN IP4 192.0.2.1\n
 s= \n
 c=IN IP4 192.0.2.1\n
 t=2873397496 2873404696\n
 m=audio 49170 RTP/AVP 0”
}

4

SRTP

Web
Server

JavaScript
Application

Browser

JavaScript
Application

Browser

H
TT

P 3264/SDP

5

SRTP

Web
Server

SIP in JS
Application

Browser

JavaScript
Application

Media
Control

Media

H
TT

P

SIP
Proxy

3264/SDP

6

SRTP

Web
Server

ROAP 2
SIP GW

JavaScript
Application

Browser

JavaScript
Application

Media
Control

Media

H
TT

P

Proxy

3264/SDP

ROAP

7

•  {
“sdp”:”v=0\n
 o=- 2890844526 2890842807 IN IP4 192.0.2.1\n
 s= \n
 c=IN IP4 192.0.2.1\n
 t=2873397496 2873404696\n
 m=audio 49170 RTP/AVP 0”
}

•  Now at least we can extend things

8

•  Easy to get confused if we have glare

•  We both send SDP at the same time

•  Is the SDP I just got a new call or an answer to my offer?

9

•  {
“messageType”: “OFFER”,
“sdp”:”v=0\n
 o=- 2890844526 2890842807 IN IP4 192.0.2.1\n
 s= \n
 c=IN IP4 192.0.2.1\n
 t=2873397496 2873404696\n
 m=audio 49170 RTP/AVP 0”
}

10

(By session I just mean some vague fluffy hand wavy sort of
concept of a set of audio and video data flowing to some other
user or application – I don’t mean what RTP or DTLS might mean)

•  We might have multiple sessions going on

•  Either simultaneously or in sequence

•  Message delays can make these look like each other

11

•  {
 “messageType”: “ANSWER”,
 "offererSessionId":"13456789ABCDEF",
 "answererSessionId":"abc1234356",
 “sdp”:”v=0\n
 o=- 2890844526 2890842807 IN IP4 192.0.2.1\n
 s= \n
 c=IN IP4 192.0.2.1\n
 t=2873397496 2873404696\n
 m=audio 49170 RTP/AVP 0”
}

•  Session ID must be globally unique

12

•  {
 “messageType”: “OFFER”,
 "offererSessionId":"13456789ABCDEF”, …
}

•  {
 “messageType”: “ANSWER”,
 "offererSessionId":"13456789ABCDEF",
 "answererSessionId":"abc1234356”, …
}

•  Each side contributes a session ID

•  Session defined by combination of each side – unique to current
offer/answer pair on given session

Forked calls would result in two session

13

•  A session has a sequence of offer/answer pairs

•  Example: upgrade to video
We have an audio call
The users decide to add video

•  This requires updating the offer/answer pair

•  How do we distinguish them?

14

•  {
“messageType”: “OFFER”,
"offererSessionId":"13456789ABCDEF”,
“seq”: 1,
“sdp”:”…”
}

•  Sequence indicates the current offer/answer exchange
“Generation” may be better name for this than “sequence”

•  OFFER and ANSWER have same sequence number

15

•  It’s not safe to have multiple OFFERs outstanding

•  What happens if I do two changes in succession?

•  We can get glare (more on that later) but need way to know there
was not glare

•  Example:
Other side adds video
I accept but then user changes camera to one with different capabilities
I need to re-OFFER but when?
After he’s gotten my ANSWER

16

•  {
“messageType”: “OK”,
“seq”:”2”,
"offererSessionId":"13456789ABCDEF”,
"answererSessionId":"abc1234356”
}

•  OK message indicates ANSWER received and accepted

•  New session parameters are active

•  Safe to do a new OFFER/ANSWER pair

17

•  ICE is slow

•  We want to start ICE as soon as possible

•  Best experience is to start ICE when the browser receives the
OFFER even before the user accepts the call

•  But we don’t know the media parameters till the user answers the
call

For instance, the user might accept audio but not video

•  (Something like the proposed mechanism is also needed to
gateway to 1-800-gofedex use case)

18

•  {
“messageType”: “ANSWER”,
"offererSessionId":"13456789ABCDEF",
"answererSessionId":"abc1234356",
“moreComing”: true,
“sdp”:… // ICE candidates but recvonly media
}

•  moreComing flag means that another ANSWER will follow to this
OFFER

•  OFFER/ANSWER transaction isn’t complete till
moreComing=false

•  No OK for moreComing=true

19

•  Also can use moreComing flag to gateway to early media

•  High level had 3 complicated cases
A non final offer such as moreComing
Serial forking
Parallel forking

•  Forking can result in new sessionIDs

•  moreComing keeps the offer from changing while waiting for an
updated Answer on same sessionID or other Answers with new
sessionID

20

Now What?

21

•  See slides in next presentation …
Adds a few more error type to support glare negotiation

22

•  Headless browsers pages, buggy JS, and general JS garbage
collection make state management a non trivial issue

•  Two situations:
one where the far side just fell off the network
Second where an orderly shutdown is in process and one side is telling other
side to clean up the state in the SDP Agent

•  Need to to display different errors to user

•  Order shutdown provides more reliable and timely state clean up

•  Timely clean up can be important to free up a resources like a
camera for use by another session

23

•  {
“messageType”: “SHUTDOWN”,
“seq”:”2”,
"offererSessionId":"13456789ABCDEF”,
"answererSessionId":"abc1234356”
}

•  Allows both sides to understand the media is being deliberately
removed, clean up state, and not display the types of errors to
users that might be displayed if the RTP connectivity was lost

•  Need to design when things “go away” in clean exit. For example:
In a “clean” exit, both sides wait until they get a OK to the shutdown message
they sent. When B receives a SHUTDOWN, it sends a SHUTDOWN to A then
B waits for OK from A. When B receives the OK, it then sends the OK for
original SHUTDOWN from A.

24

•  This is not in ROAP but we could add it …

•  RFC 3264 supports a concept of Indicating Capabilities

•  SIP uses this in the SIP OPTION message

•  This allows a remote way to find out about browser support for
various codecs

•  Privacy: This is a issue for browser fingerprinting. This function, if
implemented by browsers, would most likely worsen the privacy
situation

25

•  {
“messageType”: “CAPS-REQ”,
… (still vague on how session id works here)
}

•  {
 “messageType”: “CAPS”, … ,
 “sdp”:”v=0\n
 o=- 2890844526 2890842807 IN IP4 192.0.2.1\n
 s= \n
 c=IN IP4 192.0.2.1\n
 t=0 0\n
 m=audio 0 RTP/AVP 0”
}

26

•  Tell CODECs something about the application that they may need
to understand to make good encoding choices

•  Audio: is music or is spoken voice

•  Video: prefer spatial or temporal fidelity

•  Proposal
IANA registry of well known hints
Have some sort of setHints method on a media stream

•  Can apply before session starts or during session

27

•  Proposal

•  Have a stats method on PeerConnection

•  Have it return a dictionary of stats

•  Define an IANA registry of well known stat names
Total RTP packets received
Total missing RTP packets
…

•  The value for a stat can be primitive type, array or object

28

•  draft-jennings-rtcweb-signaling-gateway has sketch of design

•  Goal is to allow a stateless GW design by passing the GW state
to the browser to be returned to the GW later.

•  State data is opaque blob to browser

