### **Stochastic Routing**

Routing Area Meeting IETF 82 (Taipei) Nov.15, 2011

#### Routing

- Topology modeled as graph G = (V,E,A)
  - V: vertices and E: edges
  - A: set of attributes associated to each edge  $e \in E$ , e.g., residual capacity c, delay d, loss l, etc.
- Consider set  $(s_1, t_1), \dots, (s_k, t_k)$  of i src-dst pairs
  - Associated to each pair  $(s_i, t_i)$ : demand with known nonnegative value  $v_i$  and size  $r_i$

#### Routing problem

- Find for each unrouted demand  $(s_i, t_i)$  a routing path from  $s_i$  to  $t_i$  for it that maximizes the value of these demands without violating edge attributes
- Adaptive routing: routing decisions depend on the instantiated sizes of the previously routed demands

#### **Stochastic Routing**

- Stochastic routing problem in which one or several of the parameters are not deterministic
  - Demands size are stochastic: probability distribution is specified for the demands
  - Delay to move between nodes are random variables
  - (Simultaneous) failure are randomly distributed according to time and space

## Key Challenge: routing information and decision-making

- As in any other stochastic problem, a key issue is: "How do the revelation of information on the uncertain parameters and decision-making (optimization) interact?"
  - When do values taken by the uncertain parameters become known?
  - What changes can each router (must each router) make on prior-routing decisions on basis of newly obtained information?
    - => How to make correct local decisions?
      - Each router must know something about global state (inherently large, dynamic, and costly to collect)
      - A routing protocol must intelligently summarize relevant information

#### **Modeling Paradigms (1)**

- Real-time optimization (re-optimization)
  - Assumption: information is revealed over time as traffic follow their assigned routes/paths (also referred to as dynamic stochastic routing)
  - Operation: routes are created piece by piece on the basis of the information currently available (at each node)
  - Approach: dynamic programming

#### **Modeling Paradigms (2)**

- A priori optimization
  - A solution must be determined beforehand
  - This solution is "confronted" to the realization of the stochastic parameters in a second step
- Approaches
  - Chance-constrained programming: relies on the introduction of probabilistic constraints
    - Pr{total demand assigned to route  $r \le capacity \} \ge 1-\alpha$
  - (Two-stage) stochastic programming with recourse
  - Robust optimization: uncertainty is represented by an uncertain parameter vector that must belong to a given polyhedral set (without any probability defined) together with, e.g., lower/upper bound for each demand and upper bound on total demand
  - "Ad hoc" approaches

#### Learning-based Stochastic Adaptive Routing

#### Reinforcement learning (RL)

- Objective
  - Learn what to do--how to map situations (deduced from feedback from the environment) to actions--so as to maximize a numerical reward signal
  - Learner is not told which actions to take, it must discover which
    actions yield the most reward by trying them (note: actions may affect
    not only the immediate reward but also the next situation and,
    through that, all subsequent rewards)

#### Characteristics

- Trial-and-error search
  - Learn from interactions: obtain examples of desired behavior that are both correct and representative
  - Trade-off between exploration and exploitation
- Delayed reward

#### Learning-based Stochastic Adaptive Routing

- Routing problem multi-agent RL problem
  - Individual router = (learning) agent which adapts its routing decisions according to rewards/penalty based on
    - Global parameters
    - Non-local parameters (distribution)
    - Local parameters (determined by local observations)



#### **Routing Space**



# adage computer programmer Melvin Conway who introduced the idea in 1968:

"...organizations which design systems ... are constrained to produce designs which are copies of the communication structures of these organizations."