
Algorithms for computing Maximally
Redundant Trees for IP/LDP Fast-Reroute

draft-enyedi-rtgwg-mrt-frr-algorithm-00

Gábor Sándor Enyedi
egboeny@ericsson.com

Alia Atlas

akatlas@juniper.net

András Császár
eandcss@ericsson.com

MRT
•  Maximally Redundant Trees

–  A pair of directed spanning trees
–  The common root is reachable along both of them
–  The two paths along the two trees are maximally

disjoint

a b

f

d c root

h i

k g

j

e

Why do we need this draft?

•  We need a pair of MRTs rooted at each
node
– All the nodes should compute the same!
– We will need standardization for MRT

computation (algorithm) or results of that
computation.

Principles

Partial order
ADAG

Blocks and GADAG

Partial order
•  Partial order of a set (e.g. set of nodes)

–  A relation like a normal set
–  Except: not all the elements can be compared

•  For some a and b neither a<b nor a>b
•  Graph representation:

–  Directed Acyclic Graph (DAG)

min

max
•  min<a<b<f<c<e<max
•  a<d<e

a b

f

d c

e

Finding node-disjoint paths
•  Suppose that

–  We have a partial order of nodes
–  Exactly one min and max
–  Each node (except min and max) has a lower and greater

neighbor
•  Walk down and up

–  Min and max are reached
–  The two paths are node-disjoint!

min

max

a b

f

d c

e
•  min<a<b<f<c<e<max
•  a<d<e

Two paths to the same node

•  DAG is not enough
–  Let min and max be the same node!

•  Resulting graph is an Almost DAG (ADAG)
–  There is a single node, the root, such that without

the root it is a DAG

min

max

root

a b

f

d c

e
•  min<a<b<f<c<e<max
•  a<d<e
•  root<a<b<f<c<e<root
•  a<d<e

Redundant paths to the root
•  Blue path:

–  Nodes must increase
•  Red path:

–  Nodes must decrease
•  Load sharing is possible

root

a b

f

d c

e

Finding an ADAG
(2-connected networks)

•  Phase 1 – basic partial ADAG
–  Find a partial ADAG for a cycle containing the root

•  Use either direction
–  Extend partial ADAG into all nodes

root

a b

f

d c

e

Finding an ADAG
(2-connected networks)

•  Phase 2 – extending
–  Find a path from one “ready” node to the another
–  Nodes along the path must not be ready (except the endpoints)
–  Add the path to the ADAG in a “proper” direction

root

a b

f

d c

e

Adding not used links

•  Some links may be out of the ADAG

BAD! e<f OK

root

a b

f

d c

e

How can ordering be kept up?

•  ADAG is almost a DAG
– Let root be now only the smallest one
– Now, it’s a DAG, create a topological sort
– This is a total order

•  Add extra links with respect to this

2 3

5

4 root

a b

f

d c

e

6

7

1

Add back links to root and we
have an ADAG using all links.

What if the network is not
2-connected?

•  We need to split the graph into blocks
– Block:

•  Maximally 2-connected subgraph
•  Two connected nodes
•  (Isolated node)

– Each block has its local-root
•  That is the cut-vertex towards the root

– Compute an ADAG in all the blocks
– This is a Generalized ADAG

root

f

Generalized ADAG

•  Block1: root, a, b, c, d, e, f
•  Block2: f, g
•  Block3: g, h, i, j, k

h i

k g

j

a b

d c

e

The algorithm

MRTs in a block
MRTs in the whole network

How to Find MRTs
•  If it is complex, then we break the problem

down
– Transform network into its blocks
– Find ADAGs in each block
– Connect up the ADAGs to make a GADAG
– Add all the other links in – with the proper

directionality
•  From a GADAG, compute your next-hops to

each destination
– First for those in the same block
– Destinations outside the block inherit their next-

hops from a proxy in the block

How to Find MRTs
•  If it is complex, then we break the problem

down
– Transform network into its blocks
– Find ADAGs in each block
– Connect up the ADAGs to make a GADAG
– Add all the other links in – with the proper

directionality
•  From a GADAG, compute your next-hops to

each destination
– First for those in the same block
– Destinations outside the block inherit their next-

hops from a proxy in the block

MRTs in a single block

•  As the computing router S: From the
GADAG, can use SPF and reverse SPF to
find next-hops to all destinations in the
same block
– SPF gives nodes definitely greater
–  rSPF gives nodes definitely lesser
– Remaining nodes are not ordered

•  Then use some simple rules

MRTs in a single block:
source perspective

•  Find greater and lesser nodes
•  Rules

1.  If S < D – increase to D decrease to root
2.  If S > D – increase to root decrease to D
3.  No order – decrease to root increase to root
4.  If D=root – increase to root decrease to root
5.  If S=root – increase to D decrease to D

Routing table of node c (S = c): +

+

-

- -

0

a b

f

d c

e
-

root

Dest
(D)

Rule
Used

Blue
Next-hop

Red
Next-hop

a 2 e b

b 2 e b

d 3 b e

e 1 e b

f 2 e f

root 4 e b

MRTs in a single block:
destination perspective

root

a b

f e

c

Destination: node c (D = c)

d

•  Find greater and lesser nodes
•  Rules

1.  If S < D – increase to D decrease to root
2.  If S > D – increase to root decrease to D
3.  No order – decrease to root increase to root
4.  If d=root – increase to root decrease to root
5.  If s=root – increase to D decrease to D

Src
(S)

Rule
Used

Blue
Next-hop

Red
Next-hop

a 1 b root

b 1 c a

d 2 a e

e 3 root c

f 2 c e

root 1 a e

How to Find MRTs
•  If it is complex, then we break the problem

down
– Transform network into its blocks
– Find ADAGs in each block
– Connect up the ADAGs to make a GADAG
– Add all the other links in – with the proper

directionality
•  From a GADAG, compute your next-hops to

each destination
– First for those in the same block
– Destinations outside the block inherit their next-

hops from a proxy in the block

Inter-block MRTs

h i

k g

j

Proxy node: the last vertex in the block to the destination (along any path)

root

a b

f

d c

e

Dest
(D)

Rule
Used

Blue
Next-hop

Red
Next-
hop

a 2 e b

b 2 e b

d 3 b e

e 1 e b

f 2 e f

root 4 e b

Dest
(D)

Proxy Blue
Next-
hop

Red
Next-
hop

g f e f

h f e f

i f e f

j f e f

k f e f

Example – destination is node C

•  Block1: root, a, b, c, d, e
•  Block2: e, f
•  Block3: f, g, h, i, j

h i

k g

j root

a b

f e

c d

Summary

•  Algorithm
– Find GADAG

•  ADAG in each block
•  Add not used links

– Find next-hops along the MRTs
•  Do an SPF and an rSPF to find ordered nodes
•  Use rules to find NHs your block
•  Find proxy nodes

Thanks for the attention

