draft-bertrand-cdni-cdn-footprint

IETF83 – Paris WG CDNi

Gilles Bertrand (gilles.bertrand@orange.com)

Draft overview

Purposes:

- present use cases for CDN Footprint Discovery in CDNI
- 2. clarify the terminology
- identify additional requirements for controlling the exchange of Footprint information.
- 4. provide a **survey of existing work** on the subject

Terminology (1/2)

Aggregate CDN Footprint:

 a set of User-Agent reachability information for which a CDN claims that it can deliver content in good conditions, by itself or through one of its dCDNs.

High-Level CDN Footprint:

 the part of the footprint information that reflects rather static and business-level information.

On-Net Footprint:

 a set of User-Agent reachability information for which a CDN claims that it can deliver content directly. For instance, a given Access CDN may assert that its On-Net CDN Footprint encompasses all end-users in two ASes (AS 64496 and AS 64497).

Terminology (2/2)

- CDN Delivery Proximity:
 - Information on the network distance between a set of end-users in the CDN Footprint and a close Surrogates of the considered CDN or of one of its dCDNs. Various metrics can be considered.
- CDN Footprint Discovery:
 - Discovery of information on CDN Footprint and CDN Delivery Proximity.
 - **1. High-Level Footprint Discovery** permits discovering groups of endusers/Surrogates and interconnection costs between them.
 - **2. Detailed Footprint Discovery** permits exchanging information that is subject to more scalability and confidentiality constraints. The level of information sharing must be tightly controlled.

Use cases for footprint discovery

- In some cases, High-Level CDN Footprint Discovery does not require a protocol: uCDN knows the dCDN's footprint as in the following examples:
 - High-Level CDN Footprint is Germany
 - High-Level CDN Footprint is AS 64496
- Special cases only:
 - When the dCDNs' High-Level Footprints overlap.
 - 2. When end-users outside the dCDNs' High-Level Footprints can request content.
 - => uCDN needs additional criteria than the dCDNs' Footprint to select a dCDN.
- Cases where a protocol is potentially interesting:
 - when uCDN needs dCDNs' Delivery Proximity information to determine which dCDN is the "best" to serve a given set of end- users.

Additional requirements

- Existing requirements related to Footprint Discovery: REQ-2 and REQ-3
- Additional requirements:
 - FPT-1 [MED] A uCDN must be able to discover CDN Footprint and CDN Delivery Proximity information about dCDNs.
 - FPT-2 [HIGH] A dCDN MUST be able to control what other CDNs can discover about its CDN Footprint and CDN Delivery Proximity.
 - FPT-3 [MED] A uCDN should not forward to any other CDN the Footprint and Delivery Proximity information that it has discovered about a dCDN without the explicit agreement of this dCDN.
 - FPT-4 [HIGH] A Footprint Discovery protocol should not affect network stability and scalability.

Survey (1/3)

Legacy BGP provides useful data

- AS_path
 - if CDN1 knows that CDN2's footprint is AS 64496, then BGP information enables CDN1 to map requests to CDN2: src IP @ => AS 64496 => CDN2
 - CDN Delivery Proximity information: number of ASes crossed between a BGP listener and IP prefixes
- Community tag
 - NSP filter and gather the prefixes in stable groups that are then used by an internal CDN for fine-grained request routing based on these groups;
 - this grouping is part of the detailed Footprint information; it may disclose information on the network's organization.

BGP Extension for CDNI

 [I-D.previdi-cdni-footprint-advertisement] extends Multiprotocol- BGP (MP-BGP [RFC4760]) in order for CDNs and/or ISPs to advertise their connectivity to footprints.

Survey (2/3)

BGP-TE

 [I-D.gredler-idr-ls-distribution] proposes a BGP-based mechanism by which link state and traffic engineering information can be collected from networks and shared with external components.

BGP AIGP (restricted applicability)

The Accumulated IGP Metric Attribute for BGP [I-D.ietf-idr-aigp]
defines a new TLV attribute in BGP that allows redistribution/
accumulation of IGP costs between ASes managed by the same NSP.

Survey (3/3)

ALTO Footprint

- [I-D.jenkins-alto-cdn-use-cases] NSP CDN acts as a dCDN ALTO server filters and sends prefix groups to uCDN ALTO clients according to its policies and with respect to a separate agreement it has with each uCDN. A group may appear as a PID in ALTO network and cost maps.
- [I-D.penno-alto-cdn] (<u>Section 7.1</u>.) ALTO can be used by CDNs in a different administrative domain than the ISP to provide the cost from each CDN node to all known Subscriber PIDs.
- [I-D.seedorf-alto-for-cdni] mentions that ALTO could support selection of downstream CDN but does not indicate the way ALTO server is fed.

Generic Capability Advertisement

 [I-D.he-cdni-cap-info-advertising] HTTP/1.1-based protocol used to communicate capability information (e.g., resources, footprint, load)
"to facilitate selection of the Downstream CDN by the Upstream CDN".

Conclusion / Next steps

- The need for a Footprint Discovery Protocol is limited to specific use cases.
- Key building blocks for a Footprint Discovery protocol:
 - 1. Information on the network-level connectivity to groups of prefixes
 - A mechanism to group end-users that must be served from the same set of Surrogates. Scalability/confidentiality => CDNs/NSPs are likely to provide the groups' definitions only to their trusted partners.
 - A mechanism to discover generic cost information (uCDN Delivery Proximity) for the delivery from a given set of to a given set of end-users
- More work is needed to fulfill the specific requirements that arise in the context of CDNI.