

ConEx-Based Congestion Policing – First Performance Results

Alfons Martin and Michael Menth

www.kn.inf.uni-tuebingen.de

ConEx-Based Congestion Policing

- (3) Congestion feedback: ECE signals
- Congestion allowance
 - Described by token bucket parameters
 - Rate
 - Tolerance

- Policer possibly drops packets of a user if bucket holds less than 1 token
 - Mild policer drops only packets with ConEx signals (default)
 - Strict policer drops all ConExenabled packets

Simulation Setup (1)

Simulation Setup (2)

- One-way propagation delay 20 ms
- AQM bottleneck link
 - Buffer size: 100 ms
 - Marking probability increases between 10 ms and 100 ms from 0% to 100%
- Traffic model
 - Saturated TCP sources
 - ECN-enabled TCP New Reno with selective ACK
 - RFC {793, 1122, 2018, 3168, 3782, 5681, 6298, 2883, 3517}
 - Sender notified of at most one CE per RTT ⇒ insertion of ConEx mark
 - No background traffic on bottleneck link
- Policer
 - Allowance tolerance: 1 s
 - Allowance rate varies in experiments
- Auditor is not simulated
- Single simulation run for each data point (more to be done)

Definitions

- Measure for (un)fairness in experiments
 - Configured unfairness = $\frac{\# TCP flows \ of \ heavy \ user}{\# TCP flows \ of \ light \ user}$ (on bottleneck)
 - Measured unfairness = $\frac{Average throughput of heavy user}{Average throughput of light user}$
- Measure for effect of ConEx-based congestion policing
 - $Fairness\ improvement = \frac{Configured\ unfairness}{Measured\ unfairness} 1$
 - Fairness improvement = 1 ⇒ light users get 100% more bandwidth
- ► Measure for "configured congestion" in experiments
 - $TCP \ pressure = \frac{\# TCP \ flows \ on \ bottleneck}{Bottleneck \ bandwidth}$

Impact of Allowance Rate

- Experiment setup
 - 10 Mb/s, 60(1)/1(20) users(flows)
 - Configured unfairness: 20
 - 80 flows \Rightarrow 8 $\frac{flows}{Mb/s}$

Observation

Faiirness improvement

- Significant fairness improvement for large range of allowance rates
- Optimum allowance rate exists

Impact of Policer Type

- Experiment setup
 - 10 Mb/s, 60(1)/1(20) users(flows)
 - Configured unfairness: 20
 - 80 flows \Rightarrow 8 $\frac{flows}{Mb/s}$
 - Various policer types

- Observation
 - Stricter policer causes
 - Better fairness
 - Worse bottleneck utilization for small allowance rates
 - But differences are minor

Impact of TCP Pressure

- Experiment setup
 - 10 Mb/s, conf. unfairness 20
 - Vary # light users: 10, 20, 40, 60 ⇒ 2.1, 4, 6, 8 $\frac{flows}{Mb/s}$

Observation

Faiirness improvement

 Fairness improvement increases with increasing TCP pressure

Performance Analysis

- TCP New Reno provides imperfect ECN feedback
 - At most one ConEx signal per RTT
- Required allowance rate to avoid packet drops for single flow at policer
 - 1/2 token/RTT
- Case analysis: allowance rate
 - < 1/2 token/RTT</p>
 - Light and heavy users impeded

Measured unfairness

- ≈ 1/2 token/RTT
 - Only heavy users impeded
- > 1/2 token/RTT
 - Suppression of heavy users decreases

Validation: Vary Number of Flows per User

- Experiment setup
 - 100 Mb/s, Conf. unfairness: 20, 800 flows $\Rightarrow 8 \frac{flows}{Mb/s}$
 - Vary # flows and # users
 - L = # flows per light user: 1, 2, 5, 10

Observation

Faiirness improvement

- Optimum allowance rate
 - Depends on # flows per light user
 - Coincides with $\frac{\frac{1}{2}L}{RTT}$

Validation: Vary RTT

- Experiment setup
 - 100 Mb/s, 60(10)/1(200) users(flows)
 - Conf. unfairness: 20
 - 800 flows \Rightarrow 8 $\frac{flows}{Mb/s}$
 - Vary prop. delay: 10, 20, 50, 100 ms

Observation

Faiirness improvement

- Measured RTTs: 110, 130, 160, 240 ms
- Opt. allowance rate coincides with $\frac{\frac{1}{2}L}{RTT}$
- Outlier (240 ms): only 90% util

Summary & Conclusions

- ConEx-based congestion policing
 - Improves fairness significantly (bandwidth shares)
 - In the presence of congestion (high TCP pressure)
 - Does not impede heavy users
 - In the absence of congestion (low TCP pressure)
- Optimum allowance rate
 - Depends on # flows per user and RTT
 - Reason: imperfect ECN feedback of TCP NewReno
 - More impact on performance than policer variants
- More investigation needed
 - More accurate ECN feedback, TCP variants, different tolerances, AQM marking functions, non-saturated TCP flows (more sophisticated traffic generation), byte or packet counting, policer variants, congestion allowance variants, other transport protocols, coexistence of transport protocols, realistic use cases, auditors, ...