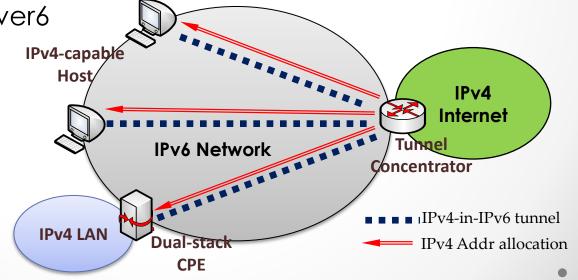
DHCPv4 over IPv6 Transport

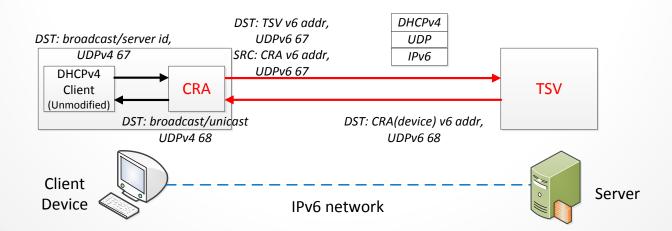

draft-ietf-dhc-dhcpv4-over-ipv6

For IETF83

Y. Cui, P. Wu, J. Wu Tsinghua Univ.
T. Lemon Nominum

Background

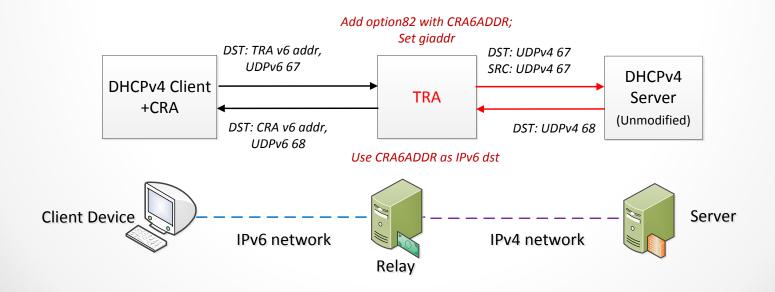
- ISP provide Residual IPv4 service to in IPv6 network
- =>Allocate IPv4 addresses to user devices
- =>Enable DHCPv4 over IPv6 network
- Typical scenario: IPv4-over-IPv6 tunneling mechanism
 - o Public 4over6
 - Lightweight 4over6
 - SD-NAT
 - 0 ...



Draft History

- Motivated from Public 4over6 Mechanism, July 2010
 - o draft-ietf-softwire-public-4over6
- DHCP part extracted to be a dedicate draft, Jun 2011
 - draft-cui-softwire-dhcp-over-tunnel
- Protocol re-construction
 - DHCPv4 over IPv4-in-IPv6 tunnel=> DHCPv4 over IPv6
 - o draft-cui-dhc-dhcpv4-over-ipv6
- Presented in Softwire & DHC in IETF 80 & 81
- Accepted by DHC WG in IETF 81
 - o draft-ietf-dhc-dhcpv4-over-ipv6-00
- ietf-01 version in Mar 12th, 2012
- Now, the ietf-02 version

Protocol Summary: Client-v6 net-Server


- CRA(Client Relay Agent)
 - Logical relay agent, co-located with DHCP client on user device
 - Configured with TSV IPv6 addr before DHCPv4 process
 - Listens on UDPv4 67& UDPv6 68, relay DHCPv4 messages between client(Inside host) and TSV(IPv6). No option82 or giaddr
- TSV(IPv6-Transport Server)
 - Capable of receive and send DHCPv4 message through IPv6
 - When receiving a message from IPv6, record the source addr (CRA) and retain it as returning addr. (Similar to DHCPv6)

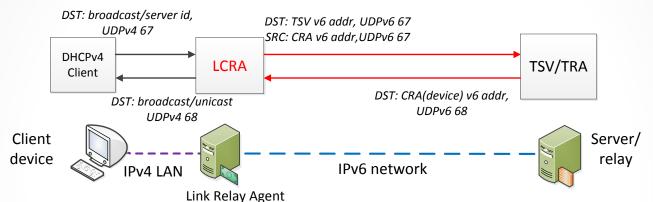
Protocol Summary: Client-v6-Relay-v4-Server

- TRA(IPv6-Transport Relay Agent)
 - Listens on UDPv6 67 & UDPv4 68, relay between CRAs(IPv6) and regular DHCPv4 server(IPv4)
 - Add Option82 with CRA6ADDR when 6->4 and use CRA6ADDR as destination address when 4->6
- CRA6ADDR sub-option in Option82

CRA6ADDR Sub-option code 16 128bit CRA IPv6 address

Updates from -ietf-00 to -01

- Improve the preciseness of protocol specification
 - State explicitly in section 8 that TRA processes option82 as required by [RFC3046], no special requirements;
 - State in section 8 that TRA SHOULD drop DHCPv4-over-IPv6 traffic which is not originated from configured server address;
- Rename the Client Relay Agent IPv6 Address Sub-option
 - 6ADDR -> CRA6ADDR
- List the security risks in security consideration section
 - DHCP protocol attack with DHCPv4-in-IPv6 messages
 - No extra damage introduced by DHCPv4-in-IPv6 format
 - DHCPv4 filtering may fail in existing firewalls
 - Easy to adapt
- Substantial edits


Updates from -ietf-01 to -02

Solve the technical issues raised on the mailing list

- Surviving Server id option
 - Just following RFC2131
 - Use one of the server's IPv4 addresses which is reachable from the client
 - For server identification
 - it works
 - For DHCP Request Unicast (during DHCP Renew)
 - This address will be reachable through IPv4, from CRAs in IPv6, as the IPv4 residual service would have been set up by then

Updates from -ietf-01 to -02 (cont')

Include the case of CRA on the link (LCRA)

- LCRA should not set giaddr & option82 by default
 - If it has to, refer to draft-ietf-dhc-dhcpv4-relay-encapsulation-01
- LCRA doesn't necessary need an IPv4 address
- CRA vs. LCRA
 - Similar functionality
 - CRA should only serve the client inside the same host, while LCRA serves any client on the link
 - When the IPv6 address of TSV/TRA is provisioned (e.g., through DHCPv6 option RFC6334), the DHCP client uses CRA;
 - else the client uses to LRA

Moving forward...

- The mechanism is simple and effective
 - -02 version solves all the issues raised
- Working implementation support
 - Both Tsinghua Univ. & ISC has experimental implementation
- The timeline from Softwire is tight
- Next step
 - o Last Call?