Improving DNS Service Availability by Using Long TTL Values

draft-pappas-dnsop-long-ttl-04.txt

Vasileious Pappas + Eric Osterweil + Danny McPherson + Duane Wessels + Matt Larson + Dan Massey + Lixia Zhang

What do TTLs have to do with availability?

- Their role in caching can be used to speed up response time
- But, they can also reduce impacts of total zone outages, like from DDoS attacks
 - Redundant name servers help overcome local outages: if one NS is reachable it can serve they zone
 - But if they are all unreachable, only remotely cached data for a zone is available
- Long TTLs on certain RRsets mean that outages (from DDoS, for Ex) can be overcome by careful operational provisioning

Where does this really matter

- We propose to distinguish between Infrastructure RRs and Application Level RRs
 - Infra-RRs: NS+A/AAAA, DNSKEY, DS, etc.
 - AL-RRs: <everything else>
- While content may need to change at varying rates, measurements have indicated Infra-RRs often don't
- In such cases, zones delegated from an unavailable zone may still be available during a parent zone's outage

Example: t0

Example t1

Example t2

Who would this help, and how much?

- Helps Infra-RRs, higher up in the hierarchy
 - Long TTL delegations from root aid TLD subtrees
- Likely helps if there popular zones below a fan out (TLDs are an example)
 - Long TTL delegations from TLDs aid popular sites (who are likely to be cached)

Measurements

- Performed measurements and idealized simulations
 - Randomly selected 100,000 zones out of 15 million
 - During 4 months, 75% did not change NS+A/AAAA
 values
 - More #s in the draft

Simulations

 Simulated an outage at the root (all NS unreachable) using DNS resolver traces from UCLA

TTL (days)	3 hour attack	6 hour attack	12 hour attack	24 hour attack
-	28.6%	27.7%	28.8%	31.8%
3	14.5%	13.6%	13.6%	13.4%
5	11.7%	11.0%	10.8%	11.0%
7	9.8%	9.1%	8.8%	8.8%
9	9.1%	8.4%	8.0%	7.7%

Take away

- Longer TTL values can increase the overall system availability under denial of service attacks
 - Note: idealized cache (no TTL caps, etc)
- Simulations suggest that with a 7 day TTL, effects of DDoS-related outage can be mitigated by roughly 70%
- Note: just simulations, real tests show resolver/ cache-specific results
 - See Duane Wessels' OARC talk

Thanks

Questions?