Security Efforts and Extension Block Processing

Angela Hennessy
Laboratory for Telecommunications
Sciences (LTS)

Joint Work With:

- Amy Alford
- Kelley Burgin
- Cherita Corbett

Bundle Security Protocol (BSP) RFC 6257

Four types of security blocks:

Bundle Authentication Block (BAB)

Payload Integrity Block (PIB)

Payload Confidentiality Block (PCB)

Extension Security Bock (ESB)

Mandatory Ciphersuites:

BAB-HMAC

PIB-RSA-SHA256

PCB-RSA-AES128-PAYLOAD-PIB-PCB

ESB-RSA-AES128-EXT

Implementation of PIB, PCB & ESB

- Uses the OpenSSL crypto library
- Mandatory ciphersuites use the Cryptographic Message Syntax (CMS), defined in RFC 5652
- Requires OpenSSL version 1.0.0 or later

Elliptic Curve Ciphersuites

Internet-Draft uses standard algorithms:

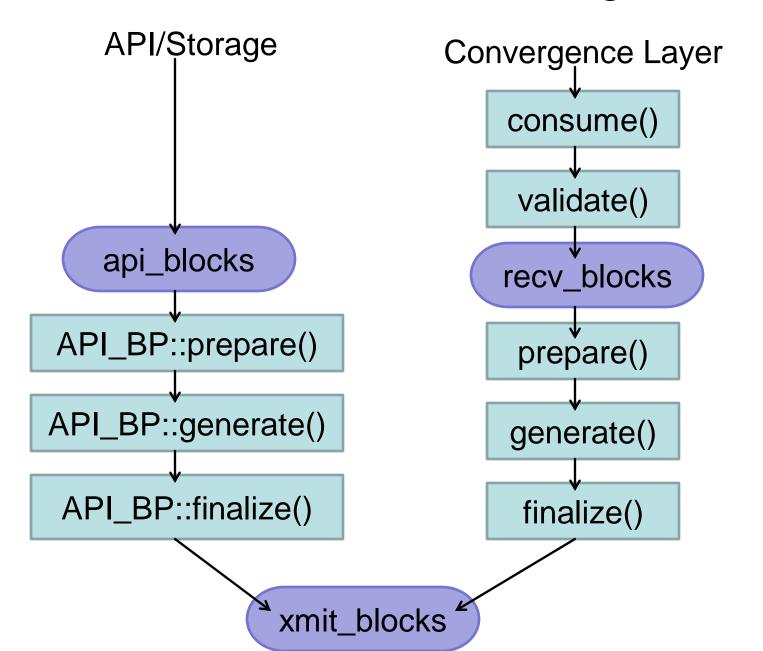
Digital Signatures: ECDSA

Key Agreement: ECDH

Encryption: AES

Two choices for parameters:

NIST P-256 (secp256r1)


NIST P-384 (secp384r1)

Extension Integrity Block (EIB)

- There is no method in BSP to digitally sign an extension block
- May want to prevent tampering with information in extension blocks
- Same algorithm as PIB

Extension Block Processing in DTN2

Extension Block Processing in DTN2

Extension Block Processing in DTN2

- Current work-around: change the API bundle_recv_flag from SRC_API to SRC_PEER
- Use API blocks to change configuration of the daemon
- Allows a user to define per-bundle security policies

Extension Block Processing in DTN2 Proposed Changes

- Remove the api_blocks list
- Add blocks to the recv_blocks list, regardless of where the blocks came from
- Move processing of blocks from consume() to validate()
- Simplify existing block processors
 - Age Extension Block
 - Coding Router

Questions?

Security Block Structure

type	flags	EID ref list
block data len		ciphersuite ID
ciphersuite flags		correlator
params len	security params data	
result len	security result data	

- Four types of security blocks are defined
- Each block may have several ciphersuites
- Associated to each block is a <u>Security-Source</u> and <u>Security-Destination</u>

Bundle Authentication Block (BAB) Hop-by-hop Authentication

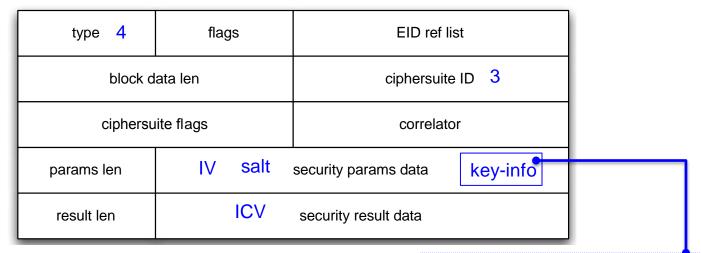
- Authenticates the bundle along one hop of the communications path
- Covers the entire bundle
- Uses a symmetric key-based algorithm
- Each node shares a secret key with each of its neighbors

Payload Integrity Block (PIB)

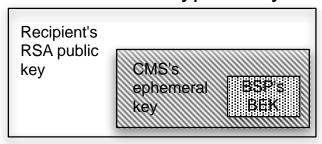
End-to-end Authentication

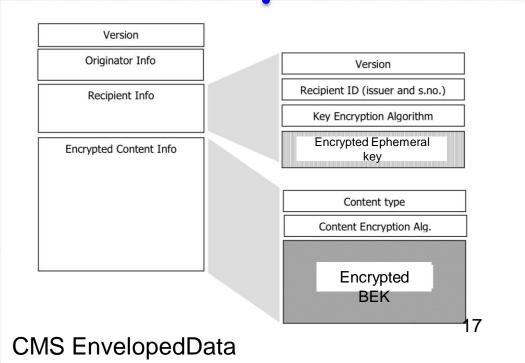
- Authenticates the bundle along the entire communications path
- Source computes an RSA signature with the CMS SignedData content type
- Intermediate nodes can verify the signature

Payload Confidentiality Block (PCB) End-to-end Encryption


- Encrypts the payload data along the entire communications path
- AES in Galois/Counter Mode for content encryption
- RSA encryption of the AES key with the CMS EnvelopedData content type

Extension Security Block (ESB)


End-to-end Encryption


- Encrypts metadata or extension blocks along the entire communications path
- AES in Galois/Counter Mode for content encryption
- RSA encryption of the AES key with the CMS EnvelopedData content type

Example: PCB & CMS

Chain of encrypted keys

Key Management Issues

- BSP does not cover key management
- Distributing keys is a challenge in DTNs
- Keys could be pre-placed on each node, or swapped between nodes
- Access to revocation checking services cannot be assumed