When Good
Standards Go Bad

IETF 83 | March 25, 2012
Chris Weber, Casaba Security

Problem Statement

The implementation of new browser features
can counter-intuitively open applications and

their users up to attacks that were not possible
before...

Shouldn’t security be getting easier?

* Do you need to be a rocket scientist to build a
Web application today?

e With security, you can think you’ve covered
everything, but that one misplaced switch out
of 1000 could short-circuit the entire
operation.

* |t seems that getting security right is
becoming harder, or at least more confusing.

A mixed bag of mitigations

Same-origin policy
Content-Security-Policy
iframe sandbox
postMessage

CORS

toStaticHtm|

anti-CSRF
anti-Clickjacking
Cryptography

X-Frame-Options
X-Content-Type-Options
HttpOnly, Secure cookies
Cache-Control
Strict-Transport-Security
Access-Control-Allow-
Origin

Content-Type
Content-Disposition

www.casabasecurity.com

Web application, meet Web browser

* You don’t own your primary interface but you
still have to balance allowing it and protecting
against it...

* But you have to support lots of clients:
— PC, Mac, Linux
— |E 7/8/9, Firefox 5-10, Chrome, and Safari
— Mobile smartphones and tablets

* And transition pains when Web browsers
change.

Example: Facebook compromised
using CORS

e A certain feature on Facebook would take a
URL like:

http://touch.facebook.com/#profile.php

 Then make an XmIHttpRequest (XHR) to

“profile.php” and load the response content
into the main document.

Example: Facebook compromised
using CORS

* Before Cross-Origin Resource Sharing (CORS),
an attacker couldn’t do this:
http://touch.facebook.com/#http://

evil.example.org/foo

* Because it would naturally be prohibited by
the XHR same-origin policy but post-CORS, the

attack works...

Example: Bypassing HTML sanitizers
with HTML5

.mario o
Q Just pwned a HTML sanitizer, a WAF/IDS and a commonly used
L . software in one strike with &colon and &period :)

Javascript:alert (1)
Is now equivalent to

Jjavascripté:alert (1)

Example: Inline SVG support opens up
XSS

Mozilla Foundation Security
Advisory 2011-27

Title: XSS encoding hazard with inline SVG
Impact: Moderate

Announced: June21,2011

Reporter: Mario Heiderich

Products: Firefox, SeaMonkey

Fixed in: Firefox 5

SeaMonkey 2.2
Description

Security researcher Mario Heiderich reported that HTML-encoded entities were being improperly decoded
when displayed inside SVG elements. This could lead to XSS attacks on sites relying on HTML encoding of user-
supplied content.

Some root causes

Implementation quirks are not well-known.

APl security considerations may be documented
but are not widely understood by application
developers.

Interoperability

— “We can’t implement protection X because browser Y
doesn’t support it yet, so we need to do Z for now”

Transition pains while churning to new standards.

References

 The Tangled Web, by Michal Zalewski
e http://m-austin.com/blog/?p=19
e http://heideri.ch/jso/#htmI5

