TCP over Network Coding

Presented by Nadia Boukhatem Télécom Paris

Joint Work with Chien-Chia Chen, Mario Gerla, M.Y. Sanadidi Network Research Lab CSD, UCLA

UCLA

TCP in Wireless Networks

- Problems
 - 1. random losses are misinterpreted as congestion
 - 2. TCP DATA and ACK flows <u>contend</u> for the same shared medium

ComboCoding—

Combined Intra- and Inter-Flow Coding

- To mitigate high loss
 - →Intra-Flow Coding (Pipeline Coding)
 - Uses random linear coding to recover losses
- To mitigate DATA-ACK interference
 →Inter-Flow Coding (PiggyCode)
 - Opportunistically XOR DATA and ACK at relays
 - Mixing only DATA and ACK within the same TCP flow
- Transparent to Upper/Lower Layers

Intra-Flow Coding (Pipeline Coding)

Benefits

- Reduced delay
- Improved throughput
- Transparency to higher layers

- Each node stamps "number of received packet" in packets header
 - Upstream node receives it
 - It adjusts *link* coding redundancy based on successful delivery (to the next hop)

Simulation Evaluation

- Simulator: Qualnet 4.5
- Coding schemes are implemented at Network Layer as a special type of routing protocols
- TCP-NewReno is chosen for the transport layer protocol
- Our previous work has shown the effectiveness of our coding scheme
- We focus on <u>fairness</u> and <u>friendliness</u> comparisons in this presentation

Simulation Configuration

- 802.11g Unicast at 54Mbps
 - CSMA/CA
 - RTS/CTS is DISABLED
 - MAC ACK and MAC retransmission (up to 7 times)
 - Promiscuous Mode ENABLED
- Traffic: 2 FTP/TCP-NewReno Flows
- Gen size: 16
- Base Redundancy K = 0.65
- Adaptive Redundancy = K + 1/(1-est_loss)

UCLA

• 2 TCP Flows in 6 Runs

		NC	Redundancy
Run 1	TCP Flow 1	Νο	No
	TCP Flow 2	Νο	No
Run 2	TCP Flow 1	ComboCoding	Adaptive
	TCP Flow 2	ComboCoding	Adaptive
Run 3	TCP Flow 1	ComboCoding	Adaptive
	TCP Flow 2	Νο	Νο
Run 4	TCP Flow 1	ComboCoding	Adaptive
	TCP Flow 2	Νο	Adaptive
Run 5	TCP Flow 1	ComboCoding	No
	TCP Flow 2	Νο	No
Run 6	TCP Flow 1	No	Adaptive
	TCP Flow 2	Νο	Adaptive

- Simulation time: 110 seconds (FTP starts at 20 sec)
- Vary per link <u>Packet</u> <u>Error</u> <u>Rate over time</u>
 - 20~50 sec: 0% PER
 - 50~80 sec: 40% PER
- ^{2012/03/2} 80~110 sec: 20% PER

Run 1: No Coding No Redundancy

Run 2: ComboCoding with Adaptive Redundancy

Run 3: No Coding vs. ComboCoding

Run 4: Adaptive Reno vs. ComboCoding

Run 5: No Coding vs. NC No Redundancy

Run 6: No Coding with Adaptive Redundancy

Conclusion

- TCP/NetCode works much better than TCP for random loss channels
- TCP/NetCode is intra-fair and more stable than TCP
- TCP/NC can coexist with TCP (although there is some unfriendliness due to the adaptive redundancy)
- Current work
 - Adaptive redundancy control should employ loss discrimination techniques to have a more accurate random error estimate

Related Work

- UCLA CSD e in
- "On the impact of random losses on TCP performance in coded wireless mesh networks," INFOCOM 2010 by Prof. Ros et al.
 - Study applies only to the single hop, opportunistic coding between different flows (ie inter-flow coding), like COPE
 - Interflow -coding improves throughput, but is known to be vulnerable to random errors
 - Two links correct reception requirement and packet-loss synch across TCP flows are unique of Interflow-coding
- We use standard TCP NR and only Intraflow Coding:
 - Interflow coding applied only to DATA and ACKs

THANK YOU ③

2012/03/27