BGP Persistence draft-uttaro-idr-bgp-persistence-01

James Uttaro AT&T

Adam Simpson Alcatel-Lucent

Rob Shakir BT

Clarence Filsfils Cisco Systems

Pradosh Mohapatra Cisco Systems

Bruno Decraene France Telecom

John Scudder Juniper Networks


Yakov Rekhter Juniper Networks

Agenda

- Goal & use case.
- Persistence & Graceful Restart: complementary use cases.
- Enabling both Persistence & Graceful Restart.
- Stale routes are less preferred.
- Deployment considerations.

Goal & Use case

- BGP persistence targets catastrophic failure ...
 - degraded routing is better than nothing.
- ... in a controlled network / environment.
 - In scope: BGP/MPLS VPNs, routes internal to an AS.
 - Out of scope: Internet inter-domain routing.
- Typical use case is the failure of both redundant Route Reflector.
 - including eBGP multi-hop for inter AS option C
 - i.e. BGP control plane only equipments

Persistence & Graceful Restart: complementary use cases.

GR: control plane restart

- Assumption: control plane to go back quickly, all protocols possibly affected, "certain" that forwarding is not affected.
- > attempt local recovery: keep using routes, quickly falls back if peer is dead.

Persistence: catastrophic BGP failure

- Assumption: BGP only failure, possibly large scope & long duration, no certainty on route validity.
- → degraded mode: use live path if available, otherwise stale path is better than nothing, relies on others protocol (IGP, BFD, link layer...) to check BGP Next Hop liveliness.

→ Largely independent usages

• One could enable GR or Persistence or both or none.

→ Translate into different solutions

- GR: short timer, no attribute change, no route advertisement, negotiate capability with peer.
- Persistence: long timer, lower preference of stale routes, re-advertise, no capability negotiation.

Persistence and Graceful Restart interactions

- Persistence and GR can be enabled independently
 - GR only → RFC 4724
 - Persistence → draft bgp-persistence
- If both are enabled on a BGP session, the principle is to start first with Graceful Restart
 - a. If GR recovers → GR ends, back to normal BGP → Persistence never used
 - b. else (GR fails) → Persistence starts
- Both cases detailed in the draft.

Stale routes are less preferred

- Route preference requirement:
 - a. A stale path is less preferred than a live path.
 - b. Between stale paths, (pre-stale) relatives preference are kept.
- Mechanism investigated:
 - Cost Community, Local Pref, well known community, BGP attribute
 - both for eBGP & iBGP

Proposed way to lower the preference

iBGP (within AS)

- LOCAL_PREF decreased by a configured value
 - Pro: Available now, incremental deployment
 - Con: Some limitations (e.g. interwork w/ existing LP values)
- Optionally (long term): BGP cost community
 - Pro: flexible
 - Con: feature availability / no incremental deployment

eBGP (between ASes)

- well known STALE community
 - to be translated in iBGP as per above

Deployment considerations

5.	Deployment	Considerations																			10
http://tools.jetf.org/html/draft-uttaro-idr-bgp-persistence-01#section-5																					

- If BGP cost community used, all routers needs to be compliant with I-D.ietf-idr-custom-decision
 - otherwise, forwarding loops may form.
- BGP persistence requires a way to validate BGP Next Hop reachability / liveliness
 - ... since BGP KEEPALIVE can't be used anymore
 - e.g. for iBGP: IGP, LDP ordered mode
 - e.g. for eBGP: BFD, link layer, physical layer

thank you

Annex: main changes introduced in v1

Changes -01

- o PERSIST community removed
- o Use of local_pref or cost_community to lower the preference of the path within an AS. Between AS, the STALE community is used to convey the information.
- Deployment considerations section enhanced.
- Introduction explains why GR and persistence are different and target different needs.
- o Security section refer to RFC RFC 4781.
- o New section describing interaction between GR and Persistence.

http://tools.ietf.org/rfcdiff?url2=draft-uttaro-idr-bgp-persistence-01.txt

Persistence & GR interactions (a)

Case a: GR succeed and Persistence never kicks in:

- BGP session failure --> GR behavior applies.
 - Route marked as stale.
 - * Route are kept unchanged (hence not re-advertised).
- BGP session is re-established before GR timer expires --> GR succeed, GR behavior applies
 - Route are refreshed.
 - When End-of-RIB is received, route still marked as stale are removed.
 - If routes have changed, routes are updated in the FIB and readvertised to peer as per regular BGP.

Persistence & GR interactions (b)

Case b: GR fails and Persistence kicks in:

- 1. BGP session failure --> GR behavior applies
 - Route marked as stale.
 - * Route are kept unchanged (hence not re-advertised).
- Expiry of GR restart-time-expiry timer --> GR behavior ends, Persistent behavior applies.
 - GR stale routes are marked as Persistence stale and their preference is lowered.
 - As a result, regular BGP best path computation runs and possibly select alternate routes.
 - + If routes have changed, routes are updated in the FIB.
 - + Updated routes are advertised to peer as needed.
- 3. Session now runs in persistence mode as defined in this document